Mostrar mensagens com a etiqueta sondas. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta sondas. Mostrar todas as mensagens

sexta-feira, outubro 22, 2021

A sonda Venera 9 aterrou em Vénus há 46 anos

Maquete da Venera 9 - o aterrizador estava alojado dentro da esfera

   

A Venera 9 foi uma sonda espacial enviada a Vénus e fazia parte do Programa Venera, desenvolvido pelo programa espacial soviético e era essencialmente idêntica à Venera 10.

A sonda era composta por um orbitador e um aterrizador e pesava no total 4.936 kg. Foi lançada no dia 8 de junho de 1975 e chegou a Vénus no dia 22 de outubro de 1975. Fez medições da atmosfera do planeta e obteve as primeiras fotos de sua superfície.
 
Primeira foto tirada da superfície de Vénus. O horizonte está no canto superior direito. As rochas possuem algumas dezenas de centímetros de largura
 
 

sexta-feira, outubro 15, 2021

A sonda Cassini-Huygens foi lançada há 24 anos

Concepção artística da sonda
   
A sonda Cassini-Huygens é um projeto colaborativo entre a ESA, responsável pela sonda Huygens, e a NASA, responsável pela sonda Cassini, para estudar Saturno e as suas luas através de uma missão espacial não tripulada. A nave espacial consistiu de dois elementos principais: a Cassini Orbiter e a sonda Huygens. Foi lançada a 15 de outubro de 1997 e entrou na órbita de Saturno no 1 de julho de 2004.

Os principais objetivos da Cassini eram:
  1. determinar a estrutura tridimensional e comportamento dinâmico dos anéis;
  2. determinar a composição das superfícies e a história geológica dos satélites;
  3. determinar a natureza e origem do material escuro do hemisfério dianteiro de Japeto;
  4. medir a estrutura tridimensional e comportamento dinâmico da magnetosfera;
  5. estudar o comportamento dinâmico das nuvens de Saturno;
  6. estudar a vulnerabilidade temporal das nuvens e a meteorologia de Titã;
  7. caracterizar a superfície de Titã a uma escala regional.
A sonda Cassini-Huygens foi lançada do Centro Espacial Kennedy usando um foguetão Titan IVB/Centaur da Força Aérea dos Estados Unidos. O lançamento do veículo foi feito por um foguetão de dois estágios, o Titan IVB, dois motores-foguetão cintados, o estágio Centaur acima, e área para transporte de carga. O sistema de vôo completo do sistema Cassini foi composto por um veículo de lançamento e pela sonda.
A sonda era composta pelo orbitador Cassini e a sonda Huygens. A Cassini iria orbitar Saturno e as suas luas durante, elo menos, quatro anos, e a Huygens iria mergulhar na atmosfera de Titã e pousar na sua superfície. A Cassini-Huygens foi uma colaboração internacional entre três agências espaciais. Dezassete países contribuíram para a construção da sonda. A Cassini Orbiter foi construída e gerida pelo laboratório JPL da NASA. A sonda Huygens foi construída pela ESA. A Agência Espacial Italiana foi responsável pela construção da antena de comunicação de alto-ganho da Cassini.
O custo total da missão Cassini-Huygens foi de cerca de 3 mil milhões de euros. Os Estados Unidos contribuíram com grande parte do custo, sendo o restante repartido entre a ESA, que contribuiu com 500 milhões de euros, e a agência italiana, que contribuiu com cerca de 150 milhões.
   

domingo, setembro 05, 2021

A sonda espacial Voyager 1 foi lançada há 44 anos

   
Voyager 1 é uma sonda espacial norte-americana lançada ao espaço em 5 de setembro de 1977 para estudar Júpiter e Saturno prosseguindo e posteriormente para o espaço interestelar. Em 4 de setembro de 2020, a sonda somou 42 anos, 11 meses e 30 dias em operação, recebendo comandos de rotina e transmitindo dados para a Terra. A sonda foi a primeira a entrar no espaço interestelar, informação oficialmente confirmada pela NASA no dia 12 de setembro de 2013.
Inserida no programa Voyager, que previa o desenvolvimento de duas sondas de exploração inter-planetária (Voyager 1 e 2), ela tinha como objetivo a realização de um "Grand Tour" espacial, aproveitando o posicionamento favorável dos gigantes gasosos do Sistema Solar. Originalmente, porém, o Grand Tour foi desenhado para permitir visitas a apenas Júpiter e Saturno. Sua missão inicial e primária encerrou-se em 20 de novembro de 1980, após seu encontro com o sistema joviano em 1979 e o sistema saturniano em 1980.
A Voyager 1, apesar de ter sido lançada para a sua missão após a Voyager 2, seguiu uma trajetória mais favorável atingindo o seu ponto mais próximo de Júpiter em 5 de março de 1979, após o qual deu início a uma nova trajetória para interseção do sistema de Saturno ao qual chegou no dia 12 de novembro de 1980. Esta trajetória mais rápida e desenhada de forma a permitir uma posição mais favorável à observação de Io e de Titã, não permitiu à sonda a continuação da missão em direção a Úrano e/ou Neptuno. Assim, a Voyager 1, seguiu uma trajetória que a levaria a sair do Sistema Solar numa direção oposta à da sonda Pioneer 10.
Ao longo da sua missão científica, a Voyager 1 permitiu o desenvolvimento do nosso conhecimento dos sistemas de Júpiter (obtendo mais de 19 mil imagens de Júpiter e dos seus satélites) e Saturno através do envio de imagens de elevada qualidade e de outras informações obtidas através dos variados instrumentos instalados na sua plataforma. Descobriu três satélites em Saturno: Atlas, Prometeu e Pandora. Após a sua missão planetária, a Voyager 1 iniciou a fase de exploração das fronteiras do Sistema Solar denominada Voyager Interstellar Mission ou VIM, que propõe o estudo da heliosfera e da heliopausa. Espera-se, assim, que a Voyager 1 seja o primeiro instrumento humano a estudar o meio interestelar.
A par da sua gémea, a Voyager 2, lançada duas semanas antes, a 20 de agosto de 1977, a Voyager 1 possui um detector de raios cósmicos, um magnetómetro, um detector de ondas de plasma, e um detector de partículas de baixa energia, todos ainda operacionais. Para além destes equipamentos, possui um espectrómetro de ondas ultravioleta e um detector de ventos solares, já fora de operação.
  

  
Para além deste equipamento, as duas sondas carregam consigo um disco (e a respectiva agulha) de cobre revestido a ouro, contendo uma apresentação para outras civilizações, com 115 imagens (onde estão incluídas imagens do Cristo Redentor no Brasil, a Grande Muralha da China, pescadores portugueses, entre outras), 35 sons naturais (vento, pássaros, água, etc.) e saudações em 55 línguas, incluindo em língua portuguesa, feita em Portugal e no Brasil. Foram também incluídos excertos de música étnica, de obras de Beethoven e Mozart, e "Johnny B. Goode" de Chuck Berry. Atualmente, a Voyager 1 é o mais distante objeto feito pelo homem a partir da Terra, viajando fora do planeta e distanciando-se do Sol a uma velocidade relativamente mais rápida que qualquer outra sonda.
   
A Grande Mancha Vermelha, vista da Voyager 1

Vista de fluxos de lava irradiando do vulcão Ra Patera em Io
    

quarta-feira, julho 14, 2021

A sonda New Horizons chegou a Plutão há seis anos

    
A New Horizons é uma sonda espacial da NASA lançada para estudar o planeta-anão Plutão e a Cintura de Kuiper. Ela foi a primeira sonda a sobrevoar Plutão e a fotografar as suas pequenas luas Caronte, Nix, Hydra, Cérbero e Estige, a 14 de julho de 2015, após cerca de nove anos e meio de viagem interplanetária e ainda sobrevoou o objeto 486958 Arrokoth.
O principal objetivo desta missão era caracterizar globalmente a geologia e a morfologia de Plutão e as suas luas, além de mapear as suas superfícies. Também ia procurar estudar a atmosfera de Plutão e a sua taxa de fuga. Outros objetivos secundários incluíam o estudo das variações da superfície e da atmosfera de Plutão e de Caronte ao longo do tempo. Foram obtidas imagens de alta-definição de determinadas áreas dos dois corpos celestes, para caracterizar a sua atmosfera superior, a ionosfera, as partículas energéticas do meio ambiente e a sua interação com o vento solar. Além disso, a sonda vai procurou determinar a existência de alguma atmosfera em torno de Caronte e caracterizar a ação das partículas energéticas entre Plutão e Caronte. Também ia procurar por satélites ainda não descobertos e por possíveis anéis que envolvam o planeta-anão e o seu satélite, antes de ser direcionado para a Cintura de Kuiper e de lá para o espaço interestelar.
Lançada a 19 de janeiro de 2006, diretamente numa trajetória de escape Terra-Sol com uma velocidade relativa de 16,26 km/s ou 58.536 km/h e usando uma combinação de foguete monopropulsor e assistência gravitacional, ela sobrevoou a órbita de Marte a 7 de abril de 2006, a de Júpiter a 28 de fevereiro de 2007, a de Saturno a 8 de junho de 2008 e a de Urano a 18 de março de 2011, a caminho da órbita de Neptuno, que cruzou a 25 de agosto de 2014, na sua jornada até Plutão.
Em dezembro de 2014, a nave encontrava-se a uma distância de 31,96 AU da Terra (4.781.148 000 km ou 4,26 horas-luz, o tempo que os sinais de rádio enviados da Terra demoram para chegar à sonda) e a 1,74 UA (260.300.000 km) de Plutão, com a frente virada para a Constelação de Sagitário, após sair do seu estado final de "hibernação" eletrónica às 01:53 UTC de 7 de dezembro. Desde o seu lançamento em 2006, a sonda passou 1.873 dias hibernando no espaço, com a quase totalidade dos seus equipamentos desligados, 2/3 do tempo total da sua jornada, divididos por 18 períodos diferentes de "hibernação" com duração variada entre 36 e 202 dias contínuos. Este período de desligamento foi o último antes da chegada ao planeta-anão. As primeiras observações de Plutão, mesmo que ainda à distância, iniciaram-se a 15 de janeiro de 2015.
A sonda sobrevoou Plutão a 14 de julho de 2015, após nove anos e meio de viagem interplanetária, alcançando o seu ponto mais próximo da superfície do planeta, cerca de 12.500 km de distância, às 12.49 horas UTC, a uma velocidade de 45.000 km/h.
Os cientistas esperam que ela se torne a quinta sonda interestelar já construída pelo Homem – após deixar o Sistema Solar em direção à heliosfera – e o segundo objeto artificial mais veloz da história de exploração espacial.
   

Fotos de Plutão, Caronte, Hidra e Nix feitas pela New Horizons
    

domingo, julho 04, 2021

A sonda Deep Impact chocou propositadamente contra um cometa há dezasseis anos

Deep Impact.jpg
 Concepção artística mostra a Deep Impact e a Impactor ao fundo
    
Inspirando-se no filme americano Impacto Profundo, a NASA chamou de Deep Impact esta sonda espacial. O objetivo da missão não tripulada norte-americana Deep Impact ou Impacto Profundo da NASA, sob os cuidados do Laboratório de Jato-propulsão - JPL, foi o de lançar um impactador contra o cometa 9P/Tempel 1 ou simplesmente Tempel 1 que circula entre as órbitas de Marte e Júpiter, observar a explosão e dela analisar os componentes químicos e físicos internos do cometa.
A sonda Deep Impact foi lançada em 12 de janeiro de 2005 pelo foguete Delta II (modelo 2925), do Cabo Canaveral, Estados Unidos. O impacto da sonda com o cometa ocorreu em 4 de julho de 2005.
O cometa escolhido pertence a uma classe de cometas que são comuns do sistema solar e o impacto não deverá causar uma significativa mudança na trajetória do cometa.
    
   
   
  
The spacecraft consists of two main sections, the 370-kg (815-lb) copper-core "Smart Impactor" that impacted the comet, and the "Flyby" section, which imaged the comet from a safe distance during the encounter with Tempel 1.
The Flyby spacecraft is about 3.2 meters (10.5 ft) long, 1.7 meters (5.6 ft) wide and 2.3 meters (7.5 ft) high. It includes two solar panels, a debris shield, and several science instruments for imaging, infrared spectroscopy, and optical navigation to its destination near the comet. The spacecraft also carried two cameras, the High Resolution Imager (HRI), and the Medium Resolution Imager (MRI). The HRI is an imaging device that combines a visible-light camera with a filter wheel, and an imaging infrared spectrometer called the "Spectral Imaging Module" or SIM that operates on a spectral band from 1.05 to 4.8 micrometres. It has been optimized for observing the comet's nucleus. The MRI is the backup device, and was used primarily for navigation during the final 10-day approach. It also has a filter wheel, with a slightly different set of filters.
The Impactor section of the spacecraft contains an instrument that is optically identical to the MRI, called the Impactor Targeting Sensor (ITS), but without the filter wheel. Its dual purpose was to sense the Impactor's trajectory, which could then be adjusted up to four times between release and impact, and to image the comet from close range. As the Impactor neared the comet's surface, this camera took high-resolution pictures of the nucleus (as good as 0.2 metre [7.9 in] per pixel) that were transmitted in real-time to the Flyby spacecraft before it and the Impactor were destroyed. The final image taken by the impactor was snapped only 3.7 seconds before impact.
The impactor's payload, dubbed the "Cratering Mass", was 100% copper (impactor 49% copper by mass) to reduce debris interfering with scientific measurements of the impact. Since copper was not expected to be found on a comet, scientists could eliminate copper from the spectrometer reading. Instead of using explosives, it was also cheaper to use copper as the payload.
The name of the mission is shared with the 1998 Deep Impact film, in which a comet strikes the Earth. This is coincidental, however, as the scientists behind the mission and the creators of the film devised the name independently of each other at around the same time.
    
    

A sonda Mars Pathfinder (com a mini-sonda Sojourner) poisou em Marte há 24 anos

Pathfinder e Sojourner no JPL (Jet Propulsion Laboratory) em outubro de 1996
    
A Mars Pathfinder foi uma missão espacial norte-americana lançada em meados de 1996 que tinha como objetivo principal enviar um robô para a superfície de Marte a fim de estudar melhor o planeta.
A Pathfinder (nave-mãe e módulo de aterragem) usou um método inovador para entrar diretamente na atmosfera de Marte, auxiliado por um pára-quedas supersónico, que reduziu a sua velocidade de descida, e um conjunto de 24 airbags laterais para diminuir o impacto com o solo.
A aterragem foi em 4 de julho de 1997, na planície de Ares Vallis, no hemisfério norte de Marte. O local exato do aterragem foi batizado de "Memorial Carl Sagan", em homenagem ao grande cientista e divulgador Carl Sagan (1934 - 1996).
O robô explorador Sojourner passeou pela superfície de Marte, recolhendo informações durante mais de um mês terrestre, no total foram obtidas 16.500 fotos a partir do módulo de aterragem e 550 imagens do Sojourner.
A missão Mars Pathfinder foi a segunda missão do programa de exploração espacial da NASA denominado de Programa Discovery. Que é um programa científico que estabeleceu metas para o desenvolvimento de missões de baixo custo para a pesquisa espacial.
     
Sojourner
      
in Wikipédia

terça-feira, março 02, 2021

A sonda espacial Pioneer 10 foi lançada há 49 anos

Placa da Pioneer10

 
A Pioneer 10, sonda interplanetária norte-americana, foi uma missão interplanetária desenvolvida a partir do Programa Pioneer, que consistiu no desenvolvimento e gestão de oito missões interplanetárias (Pioneer 6, 7, 8, 9, 10, 11, Venus Orbiter e Venus Multiprobe). Também conhecida como Pioneer F, foi desenhada juntamente com a Pioneer 11 (ou G) para o cumprimento dos objetivos definidos no Pioneer Jupiter Mission.

As Pioneer 10 e 11 receberam no seu corpo principal placas de ouro com uma mensagem com a imagem humana, caso a Pioneer 10 ou 11 fossem interceptadas por seres extraterrestres inteligentes.

Devido às características das órbitas da Terra e de Júpiter, a cada treze meses surge uma janela de lançamento que permite uma viagem interplanetária mais económica em termos energéticos (menos combustível e como tal, menos peso), foi definido que se iriam construir duas sondas idênticas a serem lançadas com um intervalo de treze meses. A primeira (a Pioneer 10) a ser lançada em 1972 e a segunda (a Pioneer 11) em 1973. O programa foi aprovado em fevereiro de 1969, definindo, a partida, três grandes objetivos para a missão:
  1. Explorar o meio interplanetário para além da órbita de Marte;
  2. Investigar a cintura de asteróides e verificar os perigos que esta representa para as sondas nas missões para além da órbita de Marte, e
  3. Explorar o sistema de Júpiter.
(...)


A 2 de março de 1972 um lançador Atlas-Centaur colocou a sonda numa trajectória em direcção de Júpiter (adquirindo nesse momento a sua designação definitiva de Pioneer 10) a uma velocidade de 51.680 km/h (na altura, representava a mais elevada velocidade de qualquer artefacto feito pelo homem). Após a sua separação do andar Centaur, a sonda articula as vigas de suporte dos RTG para a sua posição final.
Apenas 11 horas após o seu lançamento, a Pioneer 10 passa pela órbita da Lua e inicia a ligação sequencial dos vários instrumentos a bordo. Devido a uma orientação desfavorável que coloca o Sol a incidir sobre o compartimento dos instrumentos, a sonda não pode orientar a antena parabólica directamente para a Terra.
A 15 de julho de 1972 a sonda atinge a cintura de asteroides, passando a mais de 8 milhões de km do asteroide Nike, de 24 km de diâmetro. Os cálculos de probabilidade para uma passagem sem incidentes era de 9:1. Durante a viagem, a Pioneer 10 teve a oportunidade de estudar uma tempestade solar em correlação com as outras sondas Pioneer que se encontravam em órbita do Sol (Pioneer 6, 7, 8 e 9).
Em fevereiro de 1973, a Pioneer 10 dá por completa a passagem pela cintura de asteroides. Após o sucesso da passagem, é determinado que a Pioneer 11 irá seguir uma trajectória semelhante, sendo lançada a 5 de abril de 1973. A 6 de novembro de 1973, a Pioneer 10 inicia a captação de imagens de teste e a 3 de dezembro passa a 130.000 km da superfície de Júpiter. A acelaração gravítica de Júpiter acelera a velocidade da sonda para 132.000 km/h.
A precisão do voo interplanetário permitiu que a sonda atingisse o ponto máximo de aproximação a Júpiter com uma antecipação de apenas 1 minuto em relação ao projectado. Quando atingiu a distância de 500.000 km da superfície de Júpiter as imagens obtidas começam a ter melhor definição do que as melhores até então conseguidas através dos instrumentos na Terra. As imagens eram captadas através de filtros azuis e vermelhos. Através de técnicas de extrapolação, cria-se uma terceira imagem verde. A combinação das três imagens permitia a criação de uma imagem a cores reais. A Pioneer 10 confirmou a existência da magnetosfera jupiteriana.
Com a passagem pelo periapsis (ponto mais próximo de um orbita ou trajectória) os instrumentos começam a ressentir-se das elevadas doses de radiação a que estão sujeitos pelo campo magnético de Júpiter. Pouco após, a sonda entra em ocultação por de trás de Júpiter cortando todas as comunicações com a Terra.
Após a passagem por Júpiter, a sonda segue numa trajectória que a levará para fora do sistema solar. Passa em 1976 pela órbita de Saturno, em 1980 a órbita de Úrano e em 1983 a de Plutão.
O último sinal recebido pela Pioneer 10 foi em 23 de janeiro de 2003. Até seu último sinal ela continuou enviando informações do sistema solar exterior. Em 1980 uma aceleração anómala foi notada a partir da análise de dados da Pioneer 10 e Pioneer 11. O problema é conhecido como Anomalia das Pioneers e foi observado em outras naves como a Galileu e a Ulisses.
A validação das tecnologias e protocolos envolvidos permitiram e abriram caminho ao desenvolvimento do projecto Mariner Jupiter-Saturn Mission que em 1977 lançou duas sondas para Júpiter e Saturno com as designações de Voyager 1 e Voyager 2.
Em outubro de 2005 a Pioneer 10 encontrava-se a uma distância do Sol de 89,1 UA (Unidades Astronómicas) afastando-se do Sol a uma velocidade de 12,2 km/s.
Em Ooutubro de 2009, a sonda atingiu a marca de 100 UA (15 mil milhões de km) de distância do Sol, tornando-se o segundo mais distante objeto existente produzido pela humanidade, perdendo apenas para a sonda Voyager 1.
Daqui a cerca de 14.000 anos ou mais, a sonda ultrapassará os limites da Nuvem de Oort,saindo assim do sistema solar (influência do campo magnético do Sol). A sua posição atual situa-se na constelação de Touro, para onde se encaminha a uma velocidade relativa de 2,6 UA por ano, na direção da estrela Aldebarã (Alfa de Touro) onde chegará daqui a cerca de 2.000.000 de anos, caso resista.

terça-feira, janeiro 19, 2021

A sonda New Horizons foi lançada há quinze anos

     
A New Horizons é uma sonda espacial da NASA lançada para estudar o planeta-anão Plutão e a Cintura de Kuiper. Ela foi a primeira sonda a sobrevoar Plutão e a fotografar as suas pequenas luas Caronte, Nix, Hydra, Cérbero e Estige, a 14 de julho de 2015, após cerca de nove anos e meio de viagem interplanetária e ainda sobrevoou o objeto 486958 Arrokoth.
O principal objetivo desta missão era caracterizar globalmente a geologia e a morfologia de Plutão e as suas luas, além de mapear as suas superfícies. Também ia procurar estudar a atmosfera de Plutão e a sua taxa de fuga. Outros objetivos secundários incluíam o estudo das variações da superfície e da atmosfera de Plutão e de Caronte ao longo do tempo. Foram obtidas imagens de alta-definição de determinadas áreas dos dois corpos celestes, para caracterizar a sua atmosfera superior, a ionosfera, as partículas energéticas do meio ambiente e a sua interação com o vento solar. Além disso, a sonda vai procurou determinar a existência de alguma atmosfera em torno de Caronte e caracterizar a ação das partículas energéticas entre Plutão e Caronte. Também ia procurar por satélites ainda não descobertos e por possíveis anéis que envolvam o planeta-anão e o seu satélite, antes de ser direcionado para a Cintura de Kuiper e de lá para o espaço interestelar.
Lançada a 19 de janeiro de 2006, diretamente numa trajetória de escape Terra-Sol com uma velocidade relativa de 16,26 km/s ou 58.536 km/h e usando uma combinação de foguete monopropulsor e assistência gravitacional, ela sobrevoou a órbita de Marte a 7 de abril de 2006, a de Júpiter a 28 de fevereiro de 2007, a de Saturno a 8 de junho de 2008 e a de Urano a 18 de março de 2011, a caminho da órbita de Netuno, que cruzou a 25 de agosto de 2014, na sua jornada até Plutão.
Em dezembro de 2014, a nave encontrava-se a uma distância de 31,96 AU da Terra (4.781.148 000 km ou 4,26 horas-luz, o tempo que os sinais de rádio enviados da Terra demoram para chegar à sonda) e a 1,74 UA (260.300.000 km) de Plutão, com a frente virada para a Constelação de Sagitário, após sair do seu estado final de "hibernação" eletrónica às 01:53 UTC de 7 de dezembro. Desde o seu lançamento em 2006, a sonda passou 1.873 dias hibernando no espaço, com a quase totalidade dos seus equipamentos desligados, 2/3 do tempo total da sua jornada, divididos por 18 períodos diferentes de "hibernação" com duração variada entre 36 e 202 dias contínuos. Este período de desligamento foi o último antes da chegada ao planeta-anão. As primeiras observações de Plutão, mesmo que ainda à distância, iniciaram-se a 15 de janeiro de 2015.
A sonda sobrevoou Plutão a 14 de julho de 2015, após nove anos e meio de viagem interplanetária, alcançando o seu ponto mais próximo da superfície do planeta, cerca de 12.500 km de distância, às 12.49 horas UTC, a uma velocidade de 45.000 km/h.
Os cientistas esperam que ela se torne a quinta sonda interestelar já construída pelo Homem – após deixar o Sistema Solar em direção à heliosfera – e o segundo objeto artificial mais veloz da história de exploração espacial.
   
 Foto de Plutão tirada pela sonda
   

quinta-feira, janeiro 14, 2021

A sonda Huygens aterrou em Titã há dezasseis anos

   
A Cassini-Huygens é uma sonda espacial dupla, enviada em missão ao planeta Saturno e ao seu sistema planetário, sendo um projeto conjunto da NASA (Agência Espacial dos estados Unidos), ESA (Agência Espacial Europeia) e ASI (Agência Espacial Italiana), ela consiste em dois elementos principais, o orbitador/sonda Cassini e a sonda Huygens. Lançada para o espaço a 15 de outubro de 1997, ela entrou em órbita de Saturno a 1 de julho de 2004 e continua em operação, estudando o planeta, os seus satélites naturais, a heliosfera e testando a Teoria da Relatividade.
Um projeto que levou duas décadas de planeamento e desenvolvimento até ao seu lançamento, após uma viagem interplanetária de quase sete anos, na qual sobrevoou Vénus e Júpiter, a nave entrou em órbita de Saturno a meio do ano de 2004; em dezembro daquele ano a sonda Huygens separou-se do orbitador Cassini e, em 14 de janeiro de 2005, entrou na atmosfera e pousou na superfície do maior satélite de Saturno, Titã, transmitindo imagens e dados para a Terra, na primeira vez em que um objeto construído pelo Homem pousou num corpo celeste do Sistema Solar exterior.
A Cassini-Huygens integra o Programa Flagship para os planetas exteriores, o maior e mais caro programa espacial não-tripulado da NASA. As outras missões deste programa incluem as Viking, as Voyager e a Galileu. A nave/sonda espacial, de duas partes, foi batizada em homenagem aos astrónomos Giovanni Cassini e Christiaan Huygens.
   
Vista da superfície de Titã a partir da sonda Huygens
   
Objetivos
Os principais objetivos da missão Cassini-Huygens eram:
  1. determinar a estrutura tridimensional e comportamento dinâmico dos anéis;
  2. determinar a composição das superfícies e a história geológica dos satélites;
  3. determinar a natureza e origem do material escuro do hemisfério dianteiro de Jápeto.
  4. medir a estrutura tridimensional e comportamento dinâmico da magnetosfera.
  5. estudar o comportamento dinâmico das nuvens de Saturno;
  6. estudar a vulnerabilidade temporal das nuvens e a meteorologia de Titã;
  7. caracterizar a superfície de Titã a uma escala regional.
Vista da superfície de Titã a partir da sonda Huygens, depois de processada
       
A sonda Huygens
A sonda-pousador Huygens foi criada e desenvolvida pela Agência Espacial Europeia (ESA), e batizada com o nome do astrónomo descobridor de Titã, Christiaan Huygens. Desacoplada da Cassini e lançada sobre Titã no dia de Natal de 2004, depois de uma viagem de 22 dias no espaço, entrou na atmosfera do satélite, fazendo um exame minucioso das nuvens e pousando na superfície cerca de 11:30 UTC de 14 de janeiro de 2005, no oeste da região escura conhecida como Shangri-La, próximo à área brilhante de Xanadu.
A sonda foi criada para descer de para-quedas na atmosfera do maior satélite natural de Saturno (e o 2º maior do Sistema Solar, o único com atmosfera) e abrir um laboratório robótico completo à superfície. O seu sistema consistia na sonda em si e num equipamento de suporte, que permaneceu acoplado ao orbitador Cassini. Este equipamento incluía equipamento eletrónico para rastrear a sonda, receber os dados enviados durante a descida e aterragem e ainda processar e passar estes dados para o computador do orbitador, que os enviou para a Terra. Com 318 kg de peso e 1,3 m de diâmetro, a sua bateria era suficiente para 153 minutos de transmissão, mais 2 horas e 27 minutos gastas na descida. Foi o suficiente para enviar dados atmosféricos e a primeira imagem da superfície de um satélite do Sistema Solar exterior. É até hoje a aterragem mais distante da Terra já feito por um objeto construído pelo Homem. 

À escala, um lago de Titã (à esquerda) comparado com o Lago Superior (entre o Canadá e Estados Unidos) na Terra
      
Lagos líquidos em Titã
Em 21 de julho de 2006, os radares da Cassini obtiveram imagens que pareciam mostrar lagos de hidrocarboneto líquido – como metano e etano - nas latitudes norte do satélite Titã. Esta foi a primeira descoberta da existência de lagos em qualquer corpo celeste fora da Terra. Estes lagos mediriam entre 1 e 100 quilómetros de comprimento. A 13 de março de 2007, anunciou-se que havia fortes evidências da existência de mares de etano e metano no hemisfério norte do satélite. Um destes lagos teria o tamanho dos Grandes Lagos na América do Norte. Em 30 de julho de 2008 foi anunciada a descoberta de um grande lago líquido próximo da região do pólo sul de Titã, com quinze mil km². O lago foi batizado como Ontario Lacus. Em 2012, novos estudos da NASA levantaram a hipótese de que este lago seja mais parecido com um grande deserto de sal ou um grande lamaçal de hidrocarbonetos do que exatamente um lago, como nós os conhecemos, na Terra.
      

quinta-feira, outubro 22, 2020

A sonda Venera 9 aterrou em Vénus há 45 anos

Maquete da Venera 9 - o aterrizador estava alojado dentro da esfera

   

A Venera 9 foi uma sonda espacial enviada a Vénus e fazia parte do Programa Venera, desenvolvido pelo programa espacial soviético e era essencialmente idêntica à Venera 10.

A sonda era composta por um orbitador e um aterrizador e pesava no total 4.936 kg. Foi lançada no dia 8 de junho de 1975 e chegou a Vénus no dia 22 de outubro de 1975. Fez medições da atmosfera do planeta e obteve as primeiras fotos de sua superfície.
 
Primeira foto tirada da superfície de Vénus. O horizonte está no canto superior direito. As rochas possuem algumas dezenas de centímetros de largura
 
 

sábado, setembro 05, 2020

A Voyager 1 foi lançada há 43 anos

  
Voyager 1 é uma sonda espacial norte-americana lançada ao espaço em 5 de setembro de 1977 para estudar Júpiter e Saturno prosseguindo e posteriormente para o espaço interestelar. Em 4 de setembro de 2020, a sonda somou 42 anos, 11 meses e 30 dias em operação, recebendo comandos de rotina e transmitindo dados para a Terra. A sonda foi a primeira a entrar no espaço interestelar, informação oficialmente confirmada pela NASA no dia 12 de setembro de 2013.
Inserida no programa Voyager, que previa o desenvolvimento de duas sondas de exploração inter-planetária (Voyager 1 e 2), ela tinha como objetivo a realização de um "Grand Tour" espacial, aproveitando o posicionamento favorável dos gigantes gasosos do Sistema Solar. Originalmente, porém, o Grand Tour foi desenhado para permitir visitas a apenas Júpiter e Saturno. Sua missão inicial e primária encerrou-se em 20 de novembro de 1980, após seu encontro com o sistema joviano em 1979 e o sistema saturniano em 1980.
A Voyager 1, apesar de ter sido lançada para a sua missão após a Voyager 2, seguiu uma trajetória mais favorável atingindo o seu ponto mais próximo de Júpiter em 5 de março de 1979, após o qual deu início a uma nova trajetória para interseção do sistema de Saturno ao qual chegou no dia 12 de novembro de 1980. Esta trajetória mais rápida e desenhada de forma a permitir uma posição mais favorável à observação de Io e de Titã, não permitiu à sonda a continuação da missão em direção a Úrano e/ou Neptuno. Assim, a Voyager 1, seguiu uma trajetória que a levaria a sair do Sistema Solar numa direção oposta à da sonda Pioneer 10.
Ao longo da sua missão científica, a Voyager 1 permitiu o desenvolvimento do nosso conhecimento dos sistemas de Júpiter (obtendo mais de 19 mil imagens de Júpiter e dos seus satélites) e Saturno através do envio de imagens de elevada qualidade e de outras informações obtidas através dos variados instrumentos instalados na sua plataforma. Descobriu três satélites em Saturno: Atlas, Prometeu e Pandora. Após a sua missão planetária, a Voyager 1 iniciou a fase de exploração das fronteiras do Sistema Solar denominada Voyager Interstellar Mission ou VIM, que propõe o estudo da heliosfera e da heliopausa. Espera-se, assim, que a Voyager 1 seja o primeiro instrumento humano a estudar o meio interestelar.
A par da sua gémea, a Voyager 2, lançada duas semanas antes, a 20 de agosto de 1977, a Voyager 1 possui um detector de raios cósmicos, um magnetómetro, um detector de ondas de plasma, e um detector de partículas de baixa energia, todos ainda operacionais. Para além destes equipamentos, possui um espectrómetro de ondas ultravioleta e um detector de ventos solares, já fora de operação.



Para além deste equipamento, as duas sondas carregam consigo um disco (e a respectiva agulha) de cobre revestido a ouro, contendo uma apresentação para outras civilizações, com 115 imagens (onde estão incluídas imagens do Cristo Redentor no Brasil, a Grande Muralha da China, pescadores portugueses, entre outras), 35 sons naturais (vento, pássaros, água, etc.) e saudações em 55 línguas, incluindo em língua portuguesa, feita em Portugal e no Brasil. Foram também incluídos excertos de música étnica, de obras de Beethoven e Mozart, e "Johnny B. Goode" de Chuck Berry. Atualmente, a Voyager 1 é o mais distante objeto feito pelo homem a partir da Terra, viajando fora do planeta e distanciando-se do Sol a uma velocidade relativamente mais rápida que qualquer outra sonda.

A Grande Mancha Vermelha, vista da Voyager 1

Vista de fluxos de lava irradiando do vulcão Ra Patera em Io
in Wikipédia

terça-feira, julho 14, 2020

A sonda New Horizons chegou a Plutão há cinco anos

   
A New Horizons é uma sonda espacial da NASA lançada para estudar o planeta-anão Plutão e a Cintura de Kuiper. Ela foi a primeira sonda a sobrevoar Plutão e a fotografar as suas pequenas luas Caronte, Nix, Hydra, Cérbero e Estige, a 14 de julho de 2015, após cerca de nove anos e meio de viagem interplanetária e ainda sobrevoou o objeto 486958 Arrokoth.
O principal objetivo desta missão era caracterizar globalmente a geologia e a morfologia de Plutão e as suas luas, além de mapear as suas superfícies. Também ia procurar estudar a atmosfera de Plutão e a sua taxa de fuga. Outros objetivos secundários incluíam o estudo das variações da superfície e da atmosfera de Plutão e de Caronte ao longo do tempo. Foram obtidas imagens de alta-definição de determinadas áreas dos dois corpos celestes, para caracterizar a sua atmosfera superior, a ionosfera, as partículas energéticas do meio ambiente e a sua interação com o vento solar. Além disso, a sonda vai procurou determinar a existência de alguma atmosfera em torno de Caronte e caracterizar a ação das partículas energéticas entre Plutão e Caronte. Também ia procurar por satélites ainda não descobertos e por possíveis anéis que envolvam o planeta-anão e o seu satélite, antes de ser direcionado para a Cintura de Kuiper e de lá para o espaço interestelar.
Lançada a 19 de janeiro de 2006, diretamente numa trajetória de escape Terra-Sol com uma velocidade relativa de 16,26 km/s ou 58.536 km/h e usando uma combinação de foguete monopropulsor e assistência gravitacional, ela sobrevoou a órbita de Marte a 7 de abril de 2006, a de Júpiter a 28 de fevereiro de 2007, a de Saturno a 8 de junho de 2008 e a de Urano a 18 de março de 2011, a caminho da órbita de Netuno, que cruzou a 25 de agosto de 2014, na sua jornada até Plutão.
Em dezembro de 2014, a nave encontrava-se a uma distância de 31,96 AU da Terra (4.781.148 000 km ou 4,26 horas-luz, o tempo que os sinais de rádio enviados da Terra demoram para chegar à sonda) e a 1,74 UA (260.300.000 km) de Plutão, com a frente virada para a Constelação de Sagitário, após sair do seu estado final de "hibernação" eletrónica às 01:53 UTC de 7 de dezembro. Desde o seu lançamento em 2006, a sonda passou 1.873 dias hibernando no espaço, com a quase totalidade dos seus equipamentos desligados, 2/3 do tempo total da sua jornada, divididos por 18 períodos diferentes de "hibernação" com duração variada entre 36 e 202 dias contínuos. Este período de desligamento foi o último antes da chegada ao planeta-anão. As primeiras observações de Plutão, mesmo que ainda à distância, iniciaram-se a 15 de janeiro de 2015.
A sonda sobrevoou Plutão a 14 de julho de 2015, após nove anos e meio de viagem interplanetária, alcançando o seu ponto mais próximo da superfície do planeta, cerca de 12.500 km de distância, às 12.49 horas UTC, a uma velocidade de 45.000 km/h.
Os cientistas esperam que ela se torne a quinta sonda interestelar já construída pelo Homem – após deixar o Sistema Solar em direção à heliosfera – e o segundo objeto artificial mais veloz da história de exploração espacial.
   
 Foto de Plutão tirada pela sonda
   

sábado, julho 04, 2020

A sonda Mars Pathfinder (e a mini-sonda Sojourner) aterrou em Marte há 23 anos

Pathfinder e Sojourner no JPL (Jet Propulsion Laboratory) em outubro de 1996
   
A Mars Pathfinder foi uma missão espacial norte-americana lançada em meados de 1996 que tinha como objetivo principal enviar um robô para a superfície de Marte a fim de estudar melhor o planeta.
A Pathfinder (nave-mãe e módulo de aterragem) usou um método inovador para entrar diretamente na atmosfera de Marte, auxiliado por um pára-quedas supersónico, que reduziu a sua velocidade de descida, e um conjunto de 24 airbags laterais para diminuir o impacto com o solo.
A aterragem foi em 4 de julho de 1997, na planície de Ares Vallis, no hemisfério norte de Marte. O local exato do aterragem foi batizado de "Memorial Carl Sagan", em homenagem ao grande cientista e divulgador Carl Sagan (1934 - 1996).
O robô explorador Sojourner passeou pela superfície de Marte, recolhendo informações durante mais de um mês terrestre, no total foram obtidas 16.500 fotos a partir do módulo de aterragem e 550 imagens do Sojourner.
A missão Mars Pathfinder foi a segunda missão do programa de exploração espacial da NASA denominado de Programa Discovery. Que é um programa científico que estabeleceu metas para o desenvolvimento de missões de baixo custo para a pesquisa espacial.
   
Sojourner
   
in Wikipédia

A sonda Deep Impact chocou propositadamente contra um cometa há quinze anos

Deep Impact.jpg
 Concepção artística mostra a Deep Impact e a Impactor ao fundo
   
Inspirando-se no filme americano Impacto Profundo, a NASA chamou de Deep Impact esta sonda espacial. O objetivo da missão não tripulada norte-americana Deep Impact ou Impacto Profundo da NASA, sob os cuidados do Laboratório de Jato-propulsão - JPL, foi o de lançar um impactador contra o cometa 9P/Tempel 1 ou simplesmente Tempel 1 que circula entre as órbitas de Marte e Júpiter, observar a explosão e dela analisar os componentes químicos e físicos internos do cometa.
A sonda Deep Impact foi lançada em 12 de janeiro de 2005 pelo foguete Delta II (modelo 2925), do Cabo Canaveral, Estados Unidos. O impacto da sonda com o cometa ocorreu em 4 de julho de 2005.
O cometa escolhido pertence a uma classe de cometas que são comuns do sistema solar e o impacto não deverá causar uma significativa mudança na trajetória do cometa.
   
   
The spacecraft consists of two main sections, the 370-kg (815-lb) copper-core "Smart Impactor" that impacted the comet, and the "Flyby" section, which imaged the comet from a safe distance during the encounter with Tempel 1.
The Flyby spacecraft is about 3.2 meters (10.5 ft) long, 1.7 meters (5.6 ft) wide and 2.3 meters (7.5 ft) high. It includes two solar panels, a debris shield, and several science instruments for imaging, infrared spectroscopy, and optical navigation to its destination near the comet. The spacecraft also carried two cameras, the High Resolution Imager (HRI), and the Medium Resolution Imager (MRI). The HRI is an imaging device that combines a visible-light camera with a filter wheel, and an imaging infrared spectrometer called the "Spectral Imaging Module" or SIM that operates on a spectral band from 1.05 to 4.8 micrometres. It has been optimized for observing the comet's nucleus. The MRI is the backup device, and was used primarily for navigation during the final 10-day approach. It also has a filter wheel, with a slightly different set of filters.
The Impactor section of the spacecraft contains an instrument that is optically identical to the MRI, called the Impactor Targeting Sensor (ITS), but without the filter wheel. Its dual purpose was to sense the Impactor's trajectory, which could then be adjusted up to four times between release and impact, and to image the comet from close range. As the Impactor neared the comet's surface, this camera took high-resolution pictures of the nucleus (as good as 0.2 metre [7.9 in] per pixel) that were transmitted in real-time to the Flyby spacecraft before it and the Impactor were destroyed. The final image taken by the impactor was snapped only 3.7 seconds before impact.
The impactor's payload, dubbed the "Cratering Mass", was 100% copper (impactor 49% copper by mass) to reduce debris interfering with scientific measurements of the impact. Since copper was not expected to be found on a comet, scientists could eliminate copper from the spectrometer reading. Instead of using explosives, it was also cheaper to use copper as the payload.
The name of the mission is shared with the 1998 Deep Impact film, in which a comet strikes the Earth. This is coincidental, however, as the scientists behind the mission and the creators of the film devised the name independently of each other at around the same time.
   
Filme (gif animado) do High Resolution Imager (HRI) na sonda Deep Impact do impacto