Mostrar mensagens com a etiqueta sismologia. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta sismologia. Mostrar todas as mensagens

segunda-feira, dezembro 16, 2024

A crise sísmica de New Madrid, nos Estados Unidos, começou há 213 anos

The Great Earthquake at New Madrid, a 19th-century woodcut from Devens' Our First Century (1877)
      
The 1811–1812 New Madrid earthquakes were an intense intraplate earthquake series beginning with an initial earthquake of moment magnitude (7,5 -7,9) on December 16, 1811 followed by a moment magnitude 7,4 aftershock on the same day. They remain the most powerful earthquakes to hit the contiguous United States east of the Rocky Mountains in recorded history. They, as well as the seismic zone of their occurrence, were named for the Mississippi River town of New Madrid, then part of the Louisiana Territory, now within Missouri.
There are estimates that the earthquakes were felt strongly over roughly 130,000 square kilometers, and moderately across nearly 3 million square kilometers. The 1906 San Francisco earthquake, by comparison, was felt moderately over roughly 16,000 km2.
  
New Madrid fault and earthquake-prone region considered at high risk today
  
 The three earthquakes and their major aftershocks
  • December 16, 1811, 08.15 UTC (2:15 a.m.); (M 7,5 -7,9) epicenter in northeast Arkansas. It caused only slight damage to manmade structures, mainly because of the sparse population in the epicentral area. The future location of Memphis, Tennessee, experienced level IX shaking on the Mercalli intensity scale. A seismic seiche propagated upriver, and Little Prairie (a village that was on the site of the former Fort San Fernando, near the site of present-day Caruthersville, Missouri) was heavily damaged by soil liquefaction.
  • December 16, 1811 (aftershock), 14.15 UTC (8:15 a.m.); (M 7,4) epicenter in northeast Arkansas. This shock followed the first earthquake by five hours and was similar in intensity.
  • January 23, 1812, 15.00 UTC (9:00 a.m.); (M 7,3 -7,6) epicenter in the Missouri Bootheel. The meizoseismal area was characterized by general ground warping, ejections, fissuring, severe landslides, and caving of stream banks. Johnson and Schweig attributed this earthquake to a rupture on the New Madrid North Fault. This may have placed strain on the Reelfoot Fault.
  • February 7, 1812, 09.45 UTC (3:45 a.m.); (M 7,5 -8,0) epicenter near New Madrid, Missouri. New Madrid was destroyed. In St. Louis, Missouri, many houses were severely damaged, and their chimneys were toppled. This shock was definitively attributed to the Reelfoot Fault by Johnston and Schweig. Uplift along a segment of this reverse fault created temporary waterfalls on the Mississippi at Kentucky Bend, created waves that propagated upstream, and caused the formation of Reelfoot Lake by obstructing streams in what is now Lake County, Tennessee.
Susan Hough, a seismologist of the United States Geological Survey (USGS), has estimated the earthquakes' magnitudes as around magnitude 7.
There were many more aftershocks including one magnitude 7 aftershock to December 16, 1811 earthquake which occurred on December 17, 1811 at 0600 UTC (12:00 a.m.) and one magnitude 7 aftershock to February 7, 1812 earthquake which occurred on the same day at 0440 UTC (10:40 p.m.).
  
Eyewitness accounts
John Bradbury, a Fellow of the Linnean Society, was on the Mississippi on the night of December 15, 1811, and describes the tremors in great detail in his Travels in the Interior of America in the Years 1809, 1810 and 1811, published in 1817.
After supper, we went to sleep as usual: about ten o'clock, and in the night I was awakened by the most tremendous noise, accompanied by an agitation of the boat so violent, that it appeared in danger of upsetting ... I could distinctly see the river as if agitated by a storm; and although the noise was inconceivably loud and terrific, I could distinctly hear the crash of falling trees, and the screaming of the wild fowl on the river, but found that the boat was still safe at her moorings.
By the time we could get to our fire, which was on a large flag in the stern of the boat, the shock had ceased; but immediately the perpendicular banks, both above and below us, began to fall into the river in such vast masses, as nearly to sink our boat by the swell they occasioned ... At day-light we had counted twenty-seven shocks.
Eliza Bryan in New Madrid, Territory of Missouri, wrote the following eyewitness account in March 1812.
On the 16th of December, 1811, about two o'clock, a.m., we were visited by a violent shock of an earthquake, accompanied by a very awful noise resembling loud but distant thunder, but more hoarse and vibrating, which was followed in a few minutes by the complete saturation of the atmosphere, with sulphurious vapor, causing total darkness. The screams of the affrighted inhabitants running to and fro, not knowing where to go, or what to do—the cries of the fowls and beasts of every species—the cracking of trees falling, and the roaring of the Mississippi— the current of which was retrograde for a few minutes, owing as is supposed, to an irruption in its bed— formed a scene truly horrible.
John Reynolds (February 26, 1788 – May 8, 1865) who was the 4th governor of Illinois, among other political posts, mentions the earthquake in his biography My Own Times: Embracing Also the History of My Life (1855):
On the night of 16th November [sic], 1811, an earthquake occurred, that produced great consternation amongst the people. The centre of the violence was in New Madrid, Missouri, but the whole valley of the Mississippi was violently agitated. Our family all were sleeping in a log cabin, and my father leaped out of bed crying aloud "the Indians are on the house" ... We laughed at the mistake of my father, but soon found out it was worse than the Indians. Not one in the family knew at the time that it was an earthquake. The next morning another shock made us acquainted with it, so we decided it was an earthquake. The cattle came running home bellowing with fear, and all animals were terribly alarmed on the occasion. Our house cracked and quivered, so we were fearful it would fall to the ground. In the American Bottom many chimneys were thrown down, and the church bell in Cahokia sounded by the agitation of the building. It is said the shock of an earthquake was felt in Kaskaskia in 1804, but I did not perceive it. The shocks continued for years in Illinois, and some have experienced it this year, 1855.
The Shaker diarist Samuel Swan McClelland described the effects of the earthquake on the Shaker settlement at West Union (Busro), Indiana, where the earthquakes contributed to the temporary abandonment of the westernmost Shaker community.
     
Reelfoot Rift
    
Geologic setting
The underlying cause of the earthquakes is not well understood, but modern faulting seems to be related to an ancient geologic feature buried under the Mississippi River alluvial plain, known as the Reelfoot Rift. The New Madrid Seismic Zone (NMSZ) is made up of reactivated faults that formed when what is now North America began to split or rift apart during the breakup of the supercontinent Rodinia in the Neoproterozoic Era (about 750 million years ago). Faults were created along the rift and igneous rocks formed from magma that was being pushed towards the surface. The resulting rift system failed but has remained as an aulacogen (a scar or zone of weakness) deep underground.
In recent decades minor earthquakes have continued. The epicenters of over 4,000 earthquakes can be identified from seismic measurements taken since 1974. It can be seen that they originate from the seismic activity of the Reelfoot Rift. The zone which is colored in red on the map is called the New Madrid Seismic Zone. New forecasts estimate a 7 to 10 percent chance, in the next 50 years, of a repeat of a major earthquake like those that occurred in 1811–1812, which likely had magnitudes of between 7,6 and 8,0. There is a 25 to 40 percent chance, in a 50-year time span, of a magnitude 6,0 or greater earthquake.
In a report filed in November 2008, the U.S. Federal Emergency Management Agency warned that a serious earthquake in the New Madrid Seismic Zone could result in "the highest economic losses due to a natural disaster in the United States," further predicting "widespread and catastrophic" damage across Alabama, Arkansas, Illinois, Indiana, Kentucky, Mississippi, Missouri, and particularly Tennessee, where a 7,7 magnitude quake or greater would cause damage to tens of thousands of structures affecting water distribution, transportation systems, and other vital infrastructure.
    
4000 earthquake reports since 1974
      

segunda-feira, novembro 04, 2024

Há 72 anos ocorreu um dos mais fortes terramotos do século XX, na península de Kamchatka

  
The main earthquake struck at 16:58 GMT (04:58 local time) on November 4, 1952. Initially assigned a magnitude of 8.2, the quake was revised to 9.0 Mw in later years. A large tsunami resulted, causing destruction and loss of life around the Kamchatka peninsula and the Kuril Islands. Hawaii was also struck, with estimated damages of up to US$1 million and livestock losses, but no human casualties were recorded. Japan reported no casualties or damage. The tsunami reached as far as Alaska, Chile, and New Zealand.
The hypocentre was located at 52.75°N 159.5°E, at a depth of 30 km. The length of the subduction zone fracture was 600 km. Aftershocks were recorded in an area of approximately 247,000 km2, at depths of between 40 and 60 km. A recent analysis of the tsunami runup distribution based on historical and geological records give some indication as to the slip distribution of the rupture.
 
   
View of the Severo-Kurilsk port. In 1952 a whole settlement was located there. The modern town was rebuilt in another place

1952 Severo-Kurilsk Tsunami was a major tsunami that hit Severo-Kurilsk, Kuril Islands, Sakhalin Oblast, Russian SFSR, USSR, which occurred on 5 November 1952 at about 5 a.m. It led to the destruction of many settlements in Sakhalin Oblast and Kamchatka Oblast, while the main impact struck the town of Severo-Kurilsk. The tsunami was generated by a major earthquake in the Pacific Ocean, 130 km from the shore of Kamchatka, with an estimated magnitude of 9.0. There were three waves about 15-18 m high. After the earthquake the majority of the Severo-Kurilsk citizens fled to the surrounding hills, where they escaped the first wave. However, most of them returned to the town and were killed by the second wave. The third wave was minor. According to the authorities, out of a population of 6,000 people, 2,336 died.
The remaining survivors were evacuated to continental Russia. The settlement was then rebuilt in another location.

 

NOTA: embora provocando poucos mortos, dada a sua magnitude, este sismo é considerado atualmente o 5º com mais elevada magnitude não inferida, segundo a Wikipédia:

Rank Date Location Event Magnitude
1 May 22, 1960 Chile Valdivia, Chile 1960 Valdivia earthquake 9.4–9.6
2 March 27, 1964 United States Prince William Sound, Alaska, United States 1964 Alaska earthquake 9.2–9.3
3 December 26, 2004 Indonesia Sumatra, Indonesia 2004 Indian Ocean earthquake 9.2–9.3
4 March 11, 2011 Japan Pacific Ocean, Tōhoku region, Japan 2011 Tōhoku earthquake 9.0–9.1
5 November 4, 1952 Soviet Union Kamchatka, Russian SFSR, Soviet Union 1952 Severo-Kurilsk earthquake 9.0


sexta-feira, novembro 01, 2024

Um terramoto arrasou Lisboa há 269 anos...

Localização provável do epicentro do terramoto de 1755
EpicentroRegião do Banco de Gorringe
36° N 11° O
Magnitude8,5 - 9,5 (est.) MW
Data1 de novembro de 1755
Vítimas
As estimativas variam entre os 10.000 e os 90.000 mortos em Lisboa

 

 

O Sismo de 1755, também conhecido por Terramoto de 1755, ocorreu no dia 1 de novembro de 1755, resultando na destruição quase completa da cidade de Lisboa, especialmente na zona da Baixa, e atingindo ainda grande parte do litoral do Algarve e Setúbal. O sismo foi seguido de um tsunami, que se crê tenha atingido a altura de 20 metros, e de múltiplos incêndios, tendo feito certamente mais de 10 mil mortos (há quem aponte muitos mais). Foi um dos sismos mais mortíferos da história, marcando o que alguns historiadores chamam a pré-história da Europa Moderna. Os sismólogos estimam que o sismo de 1755 atingiu magnitudes entre 8,7 a 9,0 na escala de Richter.
O terramoto de Lisboa teve um enorme impacto político e socioeconómico na sociedade portuguesa do século XVIII, dando origem aos primeiros estudos científicos do efeito de um sismo numa área alargada, marcando assim o nascimento da sismologia moderna. O acontecimento foi largamente discutido pelos filósofos iluministas, como Voltaire, inspirando desenvolvimentos significativos no domínio da teodiceia e da filosofia do sublime.

Localização potencial do epicentro do terramoto de 1755 e tempos de chegada do tsunami, em horas após o sismo
 

quinta-feira, outubro 17, 2024

O sismo de Loma Prieta foi há trinta e cinco anos...

  

O Sismo de Loma Prieta de 1989 ocorreu na região da área da baía de São Francisco, na Califórnia, Estados Unidos, no dia 17 de outubro de 1989, às 17.04, hora local (00.04 UTC no dia 18), e teve magnitude de 6,9 na escala de magnitude de momento (Mw). O epicentro foi a 16 km a nordeste de Santa Cruz, numa secção na Falha de Santo André na montanha de Loma Prieta (que deu o nome ao sismo), localizada ao longo das Montanhas de Santa Cruz. Teve duração de 8 a 15 segundos e o hipocentro foi a uma profundidade de 19 km. Causou a morte de 63 pessoas e outras 3.757 ficaram feridas. O prejuízo total foi de cerca de 5,6 a 6 mil milhões de dólares.
O terramoto ficou mais conhecido por ser o primeiro sismo da era moderna com epicentro nos Estados Unidos a ser transmitido ao vivo, em rede nacional, por uma emissora de televisão no país, a American Broadcasting Company (ABC), devido ao jogo n.º 3 da World Series da Major League Baseball de 1989 que estava para ser iniciado no Candlestick Park, e por coincidência, tinha como finalistas as duas equipas da área da baía de São Francisco (região atingida pelo tremor de terra), os San Francisco Giants e os Oakland Athletics
 
  
 

terça-feira, outubro 08, 2024

Notícia interessante, retirando os exageros de linguagem, sobre água em minerais no manto do nosso planeta...

Descoberto oceano gigante 700 km abaixo da crosta da Terra. Tem mais água do que a superfície

 

 

Investigadores encontraram um inusitado e enorme oceano nas profundezas da Terra, a 700 quilómetros abaixo da crosta.

A descoberta muda algumas conceções científicas sobre o ciclo da água, a origem dos oceanos e a sua estabilidade nos milhares de milhões de anos do nosso planeta.

Mais especificamente, a quantidade massiva de água fica em formações de rochas azuis, em minerais conhecidos como ringwooditas, que ficam no manto. Escaldantes, elas alojam-se entre a superfície e o núcleo, e não guardam o que provavelmente imaginou como uma grande piscina de ondas subterrâneas, mas sim moléculas de água presas na estrutura cristalizada do mineral.

Para achar os mais profundos oceanos da Terra, foram usados métodos sismológicos. Cientistas da Universidade Northwestern espalharam uma rede de 2000 sismógrafos por todos os Estados Unidos para analisar as ondas sísmicas geradas por mais de 500 terramotos, que conseguem chegar ao núcleo do planeta e, então, são detetadas na superfície, revelando segredos da sua estrutura interna.

A velocidade das ondas foi medida em várias profundidades diferentes, determinando a composição das rochas pelas quais passaram. A presença de água, então, foi notada quando as ondas ficaram significativamente mais lentas, revelando uma camada rochosa com água nas bordas granuladas.

Segundo os investigadores, os oceanos da Terra podem ter surgido da infiltração dessa água à superfície, desafiando a teoria de que a substância teria vindo de fora, apanhando “boleia” de cometas que chocaram com o planeta.

A presença do líquido nas profundezas também é positiva, já que, caso estivesse na superfície, faria com que os mares estivessem com níveis muito mais altos, deixando apenas o topo das montanhas acima da água.

É possível que a água tenha, ao longo das eras geológicas, viajado da superfície para o interior e vice-versa, processo ligado ao movimento do manto e ao seu derretimento.

Para saber mais, os cientistas planeavam recolher mais dados sismológicos, especialmente de outros lugares do mundo, o que poderá revelar muito sobre a história da Terra e da vida nela contida.

 

in ZAP

quinta-feira, setembro 26, 2024

Um terramoto, com abalo premonitório e muitas réplicas, matou onze pessoas em Itália há 27 anos

Afresco destruído, de Cimbabue, na Basílica de São Francisco

 


1997 Umbria and Marche earthquake



Date 11:40:26, September 26, 1997 (UTC)
Magnitude 6.1 Mw
Depth 10 km (6.2 mi)
Epicenter 43.084°N 12.812°E
Countries or regions  Italy (Umbria, Marche)
Casualties11 dead
100 injured

 

The 1997 Umbria and Marche earthquake consisted of two earthquakes that occurred in the regions of Umbria and Marche, central Italy, in quick succession on the morning of September 26, 1997.
The first shock occurred at 2:33 am CEST (0:33 UTC), rated 5.5 on the Richter scale, and the second – the main shock – occurred at 11:40 am CEST (9:40 UTC), rated 6.1 on the Richter scale. Their epicentre was in Annifo.
There were several thousands of foreshocks and aftershocks from May 1997 to April 1998, more than thirty of which had a Richter magnitude more than 3.5. 11 people are known to have died following the shocks of September 26, 1997.
   

sexta-feira, setembro 20, 2024

Novidades sobre sismologia e o núcleo externo da Terra

Ecos sísmicos revelam um misterioso “donut” no interior do núcleo da Terra

 

 

Cerca de 2890 quilómetros abaixo dos nossos pés encontra-se uma gigantesca bola de metal líquido: o núcleo do nosso planeta. Cientistas usaram as ondas sísmicas criadas pelos terramotos como uma espécie de ultra-sons para “ver” a forma e a estrutura do núcleo - e descobriram um “donut”.

Uma equipa de cientistas da Australian National University, na Austrália, usou uma nova forma de estudar as ondas sísmicas criadas pelos terramotos para analisar a forma e a estrutura do núcleo da Terra, e fez uma descoberta surpreendente.

Esta análise permitiu aos investigadores fazer uma descoberta surpreendente: há uma grande região do núcleo em forma de “donut” à volta do Equador, com algumas centenas de quilómetros de espessura, onde as ondas sísmicas viajam cerca de 2% mais devagar do que no resto do núcleo.

Os resultados do estudo foram apresentados num artigo científico publicado recentemente na revista Science Advances.

“Pensamos que esta região contém mais elementos leves, como o silício e o oxigénio, e pode desempenhar um papel crucial nas vastas correntes de metal líquido que atravessam o núcleo e que geram o campo magnético da Terra”, explica um dos autores do estudo, Hrvoje Tkalčić, num artigo no The Conversation.

 

O “campo de ondas de correlação” de coda

Segundo Tkalčić, a maior parte dos estudos sobre as ondas sísmicas criadas pelos terramotos analisa as grandes frentes de onda iniciais que percorrem o mundo cerca de uma hora após o terramoto.

“Percebemos que poderíamos aprender algo de novo se observássemos a parte mais tardia e mais fraca destas ondas, conhecida como coda – a secção que termina uma peça de música”, explica o investigador. “Em particular, analisámos a semelhança entre as coda registadas em diferentes detetores sísmicos, várias horas após o seu início.

Em termos matemáticos, esta semelhança é medida por algo chamado correlação. Em conjunto, os cientistas chamam a estas semelhanças nas partes finais das ondas do terramoto o “campo de ondas de correlação de coda“.

Ao olhar para o campo de ondas de correlação de coda, os autores do estudo detetaram sinais minúsculos provenientes de múltiplas ondas reverberantes que, de outra forma, não teriam visto.

Ao compreender os caminhos que estas ondas reverberantes tomaram e ao compará-los com os sinais no campo de ondas de correlação de coda, calcularam o tempo que demoraram a viajar pelo planeta.

Depois, compararam o que tinham observado nos detetores sísmicos mais próximos dos polos com os resultados obtidos mais perto do Equador. Em geral, as ondas detetadas mais perto dos polos estavam a viajar mais depressa do que as que estavam perto do Equador.

“Experimentámos muitos modelos informáticos e simulações das condições no núcleo que poderiam criar estes resultados. No final, concluímos que deve existir um toro — uma região em forma de donut — no núcleo exterior à volta do Equador, onde as ondas viajam mais lentamente”, diz Tkalčić.

 

O núcleo da Terra, mostrando a vermelho o “donut” que contém mais elementos leves à volta do equador.

 

Os sismólogos nunca tinham detetado esta região. No entanto, a utilização do campo de ondas de correlação de coda permite “ver” o núcleo exterior com mais pormenor e de forma mais uniforme.

Estudos anteriores [estudo 1, estudo 2] concluíram que estas ondas se moviam mais lentamente em toda a parte à volta do “teto” do núcleo externo. No entanto, o novo estudo mostra que a região de baixa velocidade está apenas perto do Equador.

 

O núcleo externo e o geodínamo

O núcleo externo da Terra tem um raio de cerca de 3.480 km, o que o torna ligeiramente maior do que o planeta Marte. É constituído principalmente por ferro e níquel, com alguns vestígios de elementos mais leves como o silício, o oxigénio, o enxofre, o hidrogénio e o carbono.

A base do núcleo exterior é mais quente do que o topo, e a diferença de temperatura faz com que o metal líquido se mova como a água numa panela a ferver no fogão.

Este processo chama-se convecção térmica, e os cientistas consideram que o movimento constante deve significar que todo o material do núcleo externo está bem misturado e uniforme.

Mas se todo o núcleo externo está cheio do mesmo material, as ondas sísmicas também devem viajar à mesma velocidade em todo o lado. Mas então, porque é que estas ondas abrandam na região em forma de donut encontrada?

Os autores do estudo sugerem que deve haver uma maior concentração de elementos leves nesta região, que podem ser libertados do núcleo interno sólido da Terra para o núcleo externo, onde a sua flutuabilidade cria mais convecção.

Porque é que os elementos mais leves se acumulam mais na região equatorial do donut? Os cientistas pensam que isto pode ser explicado se, nesta região, for transferido mais calor do núcleo externo para o manto rochoso que se encontra por cima.

Há também outro processo à escala planetária a atuar no núcleo externo. A rotação da Terra e o pequeno núcleo interno sólido fazem com que o líquido do núcleo externo se organize em longos vórtices verticais que correm na direção norte-sul, como gigantescas trombas de água.

 

Uma secção transversal do núcleo da Terra, mostrando o “donut” que contém mais elementos leves em torno do equador

 

O movimento turbulento do metal líquido nestes vórtices cria o “geodínamo” responsável pela criação e manutenção do campo magnético da Terra. Este campo magnético protege o planeta do vento solar nocivo e da radiação, tornando possível a vida à superfície.

Uma visão mais pormenorizada da composição do núcleo exterior, incluindo o recém-descoberto “donut” de elementos mais leves, pode ajudar os cientistas a compreender melhor o campo magnético da Terra.

Em particular, a forma como o campo muda a sua intensidade e direção ao longo do tempo é crucial para a vida na Terra e para a potencial habitabilidade de planetas e exoplanetas.

 

in ZAP

segunda-feira, setembro 02, 2024

Informação do IPMA sobre o sismo de 26 de agosto de 2024

map image

 

No dia 26 de agosto de 2024, pelas 05.11 (hora local), ocorreu um sismo de magnitude local M5,3 (escala de Richter), com epicentro a cerca 60 km a oeste de Sines (Setúbal) e a 25 km de profundidade.
Este sismo, que não causou danos, foi sentido com intensidade máxima IV/V na Escala de Mercalli Modificada (MM56) na região de Setúbal, Lisboa, Beja, Faro, Santarém e Leiria, tendo sido sentido com menor intensidade no resto do território do continente.
Até ao momento foram registadas (e não sentidas) 9 réplicas de pequena magnitude:


    26ago 05:47 - 1.2 ML
    26ago 06:40 - 1.1 ML
    26ago 07:14 - 0.9 ML
    26ago 07:27 - 1.0 ML
    26ago 11:44 - 1.6 ML
    26ago 11:56 - 1.5 ML
    26ago 22:53 - 0.9 ML
    27ago 00:14 - 1.4 ML
    27ago 00:30 - 0.8 ML

 

Através do questionário macrossísmico online, foram já rececionados no IPMA mais de 19.000 testemunhos referenciando os efeitos deste sismo.
Em termos de magnitude, e considerando uma área com um raio de 100km em torno do epicentro, trata-se do 10º maior sismo ocorrido desde o séc. XVI, sendo esta zona muito marcada pela ocorrência, em 1858, de um terramoto histórico particularmente importante, conhecido como o sismo de Setúbal e que teve uma magnitude de M7.1. Na estação acelerométrica mais próxima do epicentro do sismo do dia 26 de agosto, foram medidos os maiores valores de aceleração do movimento do solo alguma vez registados com instrumentação moderna em Portugal continental
Se a situação o justificar esta notícia será atualizada e emitidos novos comunicados.
A localização do epicentro de um sismo é um processo físico e matemático complexo que depende do conjunto de dados, dos algoritmos e dos modelos de propagação das ondas sísmicas. Agências diferentes podem produzir resultados ligeiramente diferentes. Do mesmo modo, as determinações preliminares são habitualmente corrigidas posteriormente, pela integração de mais informação. Em todos os casos acompanhe sempre as indicações dos serviços de proteção civil.

 


Sismicidade desde o ano de 1500

 

in IPMA

domingo, setembro 01, 2024

O grande sismo de Kantō foi há 101 anos...

 

Marunouchi (commercial district of Tokyo) in flames
    
The Great Kantō earthquake struck the Kantō plain on the Japanese main island of Honshū at 11:58:44 am JST (2:58:44 UTC) on Saturday, September 1, 1923. Varied accounts indicate the duration of the earthquake was between four and 10 minutes. This was the deadliest earthquake in Japanese history, and at the time was the most powerful earthquake ever recorded in the region. The 2011 Tōhoku earthquake later surpassed that record, at magnitude 9.0.
The earthquake had a magnitude of 7.9 on the Moment magnitude scale (Mw), with its focus deep beneath Izu Ōshima Island in the Sagami Bay. The cause was rupture of part of the convergent boundary where the Philippine Sea Plate is subducting beneath the Okhotsk Plate along the line of the Sagami Trough.
This earthquake devastated Tokyo, the port city of Yokohama, and the surrounding prefectures of Chiba, Kanagawa, and Shizuoka, and caused widespread damage throughout the Kantō region. The power was so great in Kamakura, over 60 km (37 mi) from the epicenter, it moved the Great Buddha statue, which weighs about 93 short tons (84,000 kg), almost two feet.
Estimated casualties totaled about 142,800 deaths, including about 40,000 who went missing and were presumed dead. The damage from this natural disaster was the greatest sustained by prewar Japan. In 1960, the government of Japan declared September 1, the anniversary of the quake, as an annual "Disaster Prevention Day".
According to the Japanese construction company Kajima Kobori Research's conclusive report of September 2004, 105,385 deaths were confirmed in the 1923 quake.
  
Damage and deaths
Because the earthquake struck at lunchtime when many people were cooking meals over fire, many people died as a result of the many large fires that broke out. Some fires developed into firestorms that swept across cities. Many people died when their feet became stuck in melting tarmac. The single greatest loss of life was caused by a firestorm-induced fire whirl that engulfed open space at the Rikugun Honjo Hifukusho (formerly the Army Clothing Depot) in downtown Tokyo, where about 38,000 people were incinerated after taking shelter there following the earthquake. The earthquake broke water mains all over the city, and putting out the fires took nearly two full days until late in the morning of September 3. An estimated 140,000 people were killed and 447,000 houses were destroyed by the fire alone.
A strong typhoon struck Tokyo Bay at about the same time as the earthquake. Some scientists, including C.F. Brooks of the United States Weather Bureau, suggested the opposing energy exerted by a sudden decrease of atmospheric pressure coupled with a sudden increase of sea pressure by a storm surge on an already-stressed earthquake fault, known as the Sagami Trough, may have triggered the earthquake. Winds from the typhoon caused fires off the coast of Noto Peninsula in Ishikawa Prefecture to spread rapidly.
The Emperor and Empress were staying at Nikko when the earthquake struck Tokyo, and were never in any danger.
Many homes were buried or swept away by landslides in the mountainous and hilly coastal areas in western Kanagawa Prefecture, killing about 800 people. A collapsing mountainside in the village of Nebukawa, west of Odawara, pushed the entire village and a passenger train carrying over 100 passengers, along with the railway station, into the sea.
A tsunami with waves up to 10 m (33 ft) high struck the coast of Sagami Bay, Boso Peninsula, Izu Islands, and the east coast of Izu Peninsula within minutes. The tsunami killed many, including about 100 people along Yui-ga-hama Beach in Kamakura and an estimated 50 people on the Enoshima causeway. Over 570,000 homes were destroyed, leaving an estimated 1.9 million homeless. Evacuees were transported by ship from Kanto to as far as Kobe in Kansai. The damage is estimated to have exceeded USD$1 billion (or about $13,475 billion today). There were 57 aftershocks.
Altogether, the earthquake and typhoon killed an estimated 99,300 people, and another 43,500 went missing.
   
Postquake massacre of ethnic minorities and political opponents
The Home Ministry declared martial law, and ordered all sectional police chiefs to make maintenance of order and security a top priority. A rumor spread was that Koreans were taking advantage of the disaster, committing arson and robbery, and were in possession of bombs. Anti-Korean sentiment was heightened by fear of the Korean independence movement, partisans of which were responsible for assassinations of top Japanese officials and other terrorist activity. In the confusion after the quake, mass murder of Koreans by mobs occurred in urban Tokyo and Yokohama, fueled by rumors of rebellion and sabotage. The government reported 2613 Koreans were killed by mobs in Tokyo and Yokohama in the first week of September. Independent reports said the number killed was far higher. Some newspapers reported the rumors as fact, including the allegation that Koreans were poisoning wells. The numerous fires and cloudy well water, a little-known effect of a large quake, all seemed to confirm the rumors of the panic-stricken survivors who were living amidst the rubble. Vigilante groups set up roadblocks in cities, and tested residents with a shibboleth for supposedly Korean-accented Japanese: deporting, beating, or killing those who failed. Army and police personnel colluded in the vigilante killings in some areas. Of the 3,000 Koreans taken into custody at the Army Cavalry Regiment base in Narashino, Chiba Prefecture, 10% were killed at the base, or after being released into nearby villages. Moreover, anyone mistakenly identified as Korean, such as Chinese, Okinawans, and Japanese speakers of some regional dialects, suffered the same fate. About 700 Chinese, mostly from Wenzhou, were killed. A monument commemorating this was built in 1993 in Wenzhou.
In response, the government called upon the Japanese Army and the police to detain Koreans to defuse the situation; 23.715 Koreans were detained across Japan, 12.000 in Tokyo alone. The chief of police of Tsurumi (or Kawasaki by some accounts) is reported to have publicly drunk the well water to disprove the rumor that Koreans had been poisoning wells. In some towns, even police stations into which Korean people had escaped were attacked by mobs, whereas in other neighbourhoods, residents took steps to protect them. The Army distributed flyers denying the rumor and warning civilians against attacking Koreans, but in many cases vigilante activity only ceased as a result of Army operations against it. As Allen notes, the Japanese colonial occupation of Korea provided the backdrop to this extreme example of the explosion of racial prejudice into violence, based on a history of antagonism. To be a Korean in 1923 Japan was to be not only despised, but also threatened and possibly killed.
Amidst the mob violence against Koreans in the Kantō Region, regional police and the Imperial Army used the pretext of civil unrest to liquidate political dissidents. Socialists such as Hirasawa Keishichi, anarchists such as Sakae Osugi and Noe Ito, and the Chinese communal leader, Ou Kiten, were abducted and killed by local police and Imperial Army, who claimed the radicals intended to use the crisis as an opportunity to overthrow the Japanese government.
The importance of obtaining and providing accurate information following natural disasters has been emphasized in Japan ever since. Earthquake preparation literature in modern Japan almost always directs citizens to carry a portable radio and use it to listen to reliable information, and not to be misled by rumors in the event of a large earthquake.
   
Aftermath
Following the devastation of the earthquake, some in the government considered the possibility of moving the capital elsewhere. Proposed sites for the new capital were even discussed.
Japanese commentators interpreted the disaster as an act of divine (Kami) punishment to admonish the Japanese people for their self-centered, immoral, and extravagant lifestyles. In the long run, the response to the disaster was a strong sense that Japan had been given an unparalleled opportunity to rebuild the city, and to rebuild Japanese values. In reconstructing the city, the nation, and the Japanese people, the earthquake fostered a culture of catastrophe and reconstruction that amplified discourses of moral degeneracy and national renovation in interwar Japan.
After the earthquake, Gotō Shimpei organized a reconstruction plan of Tokyo with modern networks of roads, trains, and public services. Parks were placed all over Tokyo as refuge spots, and public buildings were constructed with stricter standards than private buildings to accommodate refugees. However, the outbreak of World War II and subsequent destruction severely limited resources.
Frank Lloyd Wright received credit for designing the Imperial Hotel, Tokyo, to withstand the quake, although in fact the building was damaged by the shock. The destruction of the US embassy caused Ambassador Cyrus Woods to relocate the embassy to the hotel. Wright's structure withstood the anticipated earthquake stresses, and the hotel remained in use until 1968.
The unfinished battlecruiser Amagi was in drydock being converted into an aircraft carrier in Yokosuka in compliance with the Washington Naval Treaty of 1922. However, the earthquake damaged the Amagi beyond repair, leading it to be scrapped, and the unfinished fast battleship Kaga was converted into an aircraft carrier in its place.
In contrast to London, where typhoid fever had been steadily declining since the 1870s, the rate in Tokyo remained high, more so in the upper-class residential northern and western districts than in the densely populated working-class eastern district. An explanation is the decline of waste disposal, which became particularly serious in the northern and western districts when traditional methods of waste disposal collapsed due to urbanization. The 1923 earthquake led to record-high morbidity due to unsanitary conditions following the earthquake, and it prompted the establishment of antityphoid measures and the building of urban infrastructure.
   
Memory
Beginning in 1960, every September 1 is designated as Disaster Prevention Day to commemorate the earthquake and remind people of the importance of preparation, as September and October are the middle of the typhoon season. Schools and public and private organizations host disaster drills. Tokyo is located near a fault zone beneath the Izu peninsula which, on average, causes a major earthquake about once every 70 years, and is also located near the Sagami Trough, a large subduction zone that threatens to create a massive earthquake that, in the darkest case, would kill millions in the Kanto Region. Every year on this date, schools across Japan take a moment of silence at the precise time the earthquake hit in memory of the lives lost.
Some discreet memorials are located in Yokoamicho Park in Sumida Ward, at the site of the open space in which an estimated 38,000 people were killed by a single firestorm. The park houses a Buddhist-style memorial hall/museum, a memorial bell donated by Taiwanese Buddhists, a memorial to the victims of World War II Tokyo air raids, and a memorial to the Korean victims of the vigilante killings.
       

terça-feira, agosto 27, 2024

Vivemos num planeta inquieto...

Estranhas ondas que intrigam os cientistas podem estar “por todo o lado” no manto da Terra

 

 

As zonas de velocidade ultra baixa, que abrandam abruptamente as ondas sísmicas, podem ser bastante mais comuns no manto da Terra do que pensava.

Investigações recentes revelaram que zonas misteriosas no manto profundo da Terra, conhecidas como zonas de velocidade ultra baixa (ULVZs), podem estar muito mais espalhadas do que se pensava.

Estas zonas, onde as ondas sísmicas abrandam drasticamente, têm intrigado os cientistas durante anos.

As ULVZs estão localizadas perto da fronteira entre o manto e o núcleo da Terra e podem reduzir a velocidade das ondas sísmicas até 50%.

Michael Thorne, geólogo e geofísico da Universidade de Utah, descreve estas zonas como uma das caraterísticas mais extremas do planeta, mas a sua origem, composição e papel permanecem em grande parte desconhecidos.

O estudo, publicado na revista AGU Advances, começou não com um enfoque nas ULVZs, mas antes na compreensão de ondas sísmicas invulgares conhecidas como ondas PKP precursoras.

Estas ondas, geradas por grandes terramotos em zonas de subducção, viajam através do manto terrestre, do núcleo externo líquido e do manto novamente, muitas vezes dispersando caraterísticas misteriosas no manto inferior antes de atingir o lado oposto do planeta.

Para investigar estas caraterísticas, os cientistas utilizaram um modelo informático para simular a forma como as ondas PKP viajariam através de diferentes áreas do manto.

Em seguida, compararam estas simulações com dados reais de 58 sismos profundos perto da Nova Guiné, que foram detetados por monitores sísmicos em toda a América do Norte entre 2008 e 2022, relata o Live Science.

Os investigadores descobriram que algo no manto estava a fazer com que as ondas sísmicas se dispersassem e abrandassem. Os prováveis culpados eram os vales e as cristas ao longo da fronteira entre o núcleo e o manto ou as ULVZ.

Em particular, pensa-se que a fronteira entre o núcleo e o manto sob o Pacífico ocidental, onde as ondas foram detetadas, é relativamente suave, mas uma grande ULVZ foi previamente identificada nesta região.

Análises posteriores revelaram que existem pequenas manchas de potenciais ULVZs sob a América do Norte, e outros estudos identificaram sinais destas zonas sob o norte de África, Ásia Oriental, Papua-Nova Guiné e noroeste do Pacífico.

A presença generalizada de ULVZs desafia a teoria de que são remanescentes de antigos impactos de meteoros. Em vez disso, estas zonas podem estar a formar-se ativamente hoje em dia. A pesquisa teoriza que as ULVZs podem ser áreas de basalto vulcânico formadas nas cristas médio-oceânicas.

À medida que este basalto é subduzido no manto, pode derreter e criar bolsas onde as ondas sísmicas abrandam, podendo depois ser deslocadas por outras crostas subdutoras.

 

in ZAP

O sismo de ontem nos jornais

 Sismo

 

IPMA considera que abalo desta segunda-feira serve de alerta para risco sísmico em Portugal

 

Continente português sofre maior sismo em 55 anos

 

 Sismo sentido em várias zonas de Portugal deixa habitação em Sintra em risco de derrocada


 Sismo. Portugal está preparado para mitigar um eventual desastre?

 

 Sismo serve como “alerta” para investir na preparação e na investigação do risco em Portugal

 

 Sismo de magnitude 5,3 ao largo de Sines sentido de norte a sul do país


 Martim Chichorro: “É urgente uma cartografia detalhada das nossas zonas com maior risco sísmico”

 

O sismo em Portugal teve um epicentro invulgar e por isso é preciso estudá-lo: terá sido um caso isolado ou prenúncio de uma crise sísmica?

segunda-feira, agosto 26, 2024

Sismo sentido em Portugal

 map image

 Intensidade (IPMA)


Às 05.08 horas locais de Portugal continental houver um sismo, ao largo de Sines, com magnitude 5,3  na escala de Richter (e intensidade IV/V, na escala de Mercalli modificada). Eu não senti, mas, para memória futura, aqui ficam alguns dados do mesmo.

 

Sismo de 5.3 na escala de Richter assusta várias zonas de Portugal sem causar danos

 

Aviso de Sismo Sentido no Continente 26-08-2024 05.11
2024.08.26 05.11.00 O Instituto Português do Mar e da Atmosfera informa que no dia 26-08-2024 pelas 05.11 (hora local) foi registado nas estações da Rede Sísmica do Continente, um sismo de magnitude 5.3 (Richter) e cujo epicentro se localizou a cerca de 60 km a Oeste de Sines.

Este sismo, de acordo com a informação disponível até ao momento, não causou danos pessoais ou materiais e foi sentido com intensidade máxima IV/V (escala de Mercalli modificada) na região de Sines, tendo sido sentido com menor intensidade na região de Setúbal e Lisboa .

Se a situação o justificar serão emitidos novos comunicados.


CEU at 20240826

Geofone de Ceuta 

 

MTE at 20240826

Geofone de Manteigas

 EVO at 20240826

 Geofone de Évora

terça-feira, agosto 13, 2024

Herbert Hall Turner, astrónomo e sismólogo, nasceu há 163 anos


Herbert Hall Turner
(Leeds, 13 August 1861  – Stockholm, 20 August 1930) was a British astronomer and seismologist.

Herbert Hall Turner was educated at Clifton College and Trinity College, Cambridge. In 1884 he accepted the post of Chief Assistant at Greenwich Observatory and stayed there for nine years. In 1893 he became Savilian Professor of Astronomy and Director of the Observatory at Oxford University, a post he held for 37 years until his sudden death in 1930.
He was one of the observers in the Eclipse Expeditions of 1886 and 1887. In seismology, he is credited with the discovery of deep focus earthquakes. He is also credited with coining the word parsec.

domingo, julho 28, 2024

O Grande Sismo de Tangshan foi há 48 anos....

    
O Sismo de Tangshan de 28 de julho de 1976 foi o mais grave terramoto que afligiu o mundo moderno no que diz respeito a vidas perdidas, tendo sido registado uma magnitude de  7,5 na escala de Richter. Atingiu a cidade da Tangshan, na República Popular da China às 03.52 horas da manhã, matando oficialmente 242.419 pessoas, de acordo com os dados divulgados, mas, segundo algumas fontes, esse número está estimado como sendo três vezes maior.
Muitas das pessoas que sobreviveram ao terramoto ficaram presas sob os edifícios que caíram, não resistindo à réplica de magnitude 7,1 quinze horas depois do terramoto principal, seguidos de muitas réplicas de 5.0 e 5.5. Muitas pessoas afirmaram ter visto luzes estranhas na noite anterior ao terramoto, que ficaram conhecidas como as luzes do terramoto.
78% dos edifícios industriais, 93% dos edifícios residenciais, 80% das estações de bombeamento de água e 14 linhas de esgoto ou foram completamente destruídos ou ficaram bastante danificados. As ondas sísmicas libertadas para longe e alguns edifícios localizados tão longe como Pequim, a 140 km do epicentro, ficaram danificados.
O Terramoto de Tangshan é o segundo mais mortífero que foi registado, após o sismo de 1556 de Shanxi, também na China, onde foram registados 830.000 mortos; contudo, documentos deste período são muito difíceis de encontrar.
     
    

   
The Tangshan Earthquake, also known as the Great Tangshan Earthquake, was a natural disaster that occurred on Wednesday, July 28, 1976. It is believed to be the largest earthquake of the 20th century by death toll. The epicenter of the earthquake was near Tangshan in Hebei, People's Republic of China, an industrial city with approximately one million inhabitants. The number of deaths initially reported by the Chinese government was 655.000, but this number has since been stated to be around 240.000 to 255.000. Another report indicates that the actual death toll was much higher, at approximately 650.000, and explains that the lower estimates are limited to Tangshan and exclude fatalities in the densely populated surrounding areas.
A further 164.000 people were recorded as being severely injured. The earthquake occurred between a series of political events involving the Communist Party of China, ultimately leading to the expulsion of the ruling Gang of Four by Mao's chosen successor, Hua Guofeng. In traditional Chinese thought, natural disasters are seen as a precursor of dynastic change.
The earthquake hit in the early morning, at 03.42.53,8 local time (1976 July 27 19.42.53,8 UTC), and lasted 14 to 16 seconds. Chinese government official sources state a magnitude of 7,8 on the Richter magnitude scale, though some sources listed it as high as 8,2. It was followed by a major 7,1 magnitude aftershock some 16 hours later, increasing the death toll to over 255.000. The earthquake was generated by the 25-mile long Tangshan Fault, which runs near the city and ruptured due to tectonic forces caused by the Amurian Plate sliding past the Eurasian Plate.
     
Controversial statistics
Until fairly recently, China's political environment has made it difficult to properly gauge the extent of natural disasters. Successive governments have placed more importance on the appearance of harmony rather than accurate information on damages. The Tangshan Earthquake came at a rather politically sensitive time during the late stages of the Cultural Revolution, making accurate statistics especially difficult to find. The Tangshan earthquake killed 242.000 people according to official figures, though some sources estimate a death toll up to three times higher. This would make it the deadliest earthquake in modern times, and the second or third deadliest in recorded history. It is worth noting that the population of Tangshan at the time the quake struck was estimated to be around 1.6 million and that most of Tangshan's city proper was flattened.
Many experts believe the Chinese government has never released an accurate death toll for the disaster. The death toll figure of 242.419 came from the Chinese Seismological Service in 1988, while some sources have estimated the death toll to be at 650.000. Others range as high as 700.000. The initial estimates of 655.000 dead and 779.000 injured were released by Hebei Revolutionary Committee.
     
   in Wikipédia
 
NOTA: depois de geólogos chineses terem conseguido prever o sismo de 1975 de Haicheng, a 4 de fevereiro de 1975, este sismo foi uma grande derrota para a Revolução Cultural e para o Partido Comunista Chinês - a ponto de que nunca saberemos os verdadeiros números de mortos provocados por este terramoto (foram bem mais - talvez três vezes mais) do que os cerca de 250 mil oficiais...