Mostrar mensagens com a etiqueta meteorito. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta meteorito. Mostrar todas as mensagens

sexta-feira, fevereiro 12, 2021

O Meteorito de Sikhote-Alin chegou ao nosso planeta há 74 anos

A 1.7kg individual meteorite from the Sikhote Alin meteorite shower (coasrsest octahedrite, class IIAB). This specimen is about 12cm wide. Sikhote Alin meteorite shower fell on 1947 February 12 in the dense forest of eastern Siberia, and over 23 tons of meteoritic material has been recovered.

  

An iron meteorite fell on the Sikhote-Alin Mountains, in southeastern Russia, in 1947. Large iron meteorite falls have been witnessed and fragments recovered but never before, in recorded history, a fall of this magnitude. An estimated 23 tonnes of fragments survived the fiery passage through the atmosphere and reached the Earth. 

    

The 10th anniversary stamp. It reproduces a painting by P. J. Medvedev.

  

Orbit

Because the meteor fell during daytime, it was observed by many eyewitnesses. Evaluation of this observational data allowed V. G. Fesenkov, then chairman of the meteorite committee of the USSR Academy of Science, to estimate the meteoroid's orbit before it encountered the Earth. This orbit was ellipse-shaped, with its point of greatest distance from the sun situated within the asteroid belt, similar to many other small bodies crossing the orbit of the Earth. Such an orbit was probably created by collisions within the asteroid belt.  

 

Size

Sikhote-Alin is a massive fall with the pre-atmospheric mass of the meteoroid estimated at approximately 90,000 kg. A more recent estimate by Tsvetkov (and others) puts the mass at around 100,000 kg.

Krinov had estimated the post-atmospheric mass of the meteoroid at some 23,000 kg (51,000 lb). 

 

Strewn field and craters

The strewn field for this meteorite covered an elliptical area of about 1.3 km2 (0.50 sq mi). Some of the fragments made impact craters, the largest of which was about 26 m (85 ft) across and 6 m (20 ft) deep. Fragments of the meteorite were also driven into the surrounding trees. 

 

Composition and classification

The Sikhote-Alin meteorite is classified as an iron meteorite belonging to the meteorite group IIAB and with a coarse octahedrite structure. It is composed of approximately 93% iron, 5.9% nickel, 0.42% cobalt, 0.46% phosphorus, and 0.28% sulfur, with trace amounts of germanium and iridium. Minerals present include taenite, plessite, troilite, chromite, kamacite, and schreibersite.

 

Specimens

Specimens of the Sikhote-Alin Meteorite are basically of two types:

  1. individual, thumbprinted or regmaglypted specimens, showing fusion crust and signs of atmospheric ablation
  2. shrapnel or fragmented specimens, sharp-edged pieces of torn metal showing evidence of violent fragmentation

The first type probably broke off the main object early in the descent. These pieces are characterized by regmaglypts (cavities resembling thumb prints) in the surface of each specimen. The second type are fragments which were either torn apart during the atmospheric explosions or blasted apart upon impact on the frozen ground. Most were probably the result of the explosion at 5.6 km (3.5 mi) altitude.

A large specimen is on display in Moscow. Many other specimens are held by Russian Academy of Science and many smaller specimens exist in the collectors' market. 

 

Section

 

Thumbprinted individual

   

 in Wikipédia

segunda-feira, fevereiro 08, 2021

Há 51 anos caiu um famoso meteorito no México

Fragmento do meteorito Allende

Allende é um meteorito caído no estado mexicano de Chihuahua. A sua queda ocorreu às 01.05 horas do dia 8 de fevereiro de 1969, e a bola de fogo originada pela sua entrada na atmosfera terrestre foi testemunhada por milhares de pessoas.
O meteorito Allende é o maior condrito (tipo de meteorito primitivo) já descoberto. Como resultado de uma pesquisa neste meteorito, foi descoberto um novo óxido de titânio e esse mineral foi batizado de Panguite.


Panguite é um mineral constituído de óxido de titânio encontrado a partir de pesquisas feitas no meteorito Allende, caído no estado mexicano de Chihuahua em 8 de fevereiro de 1969. Acredita-se que este mineral esteja entre os mais antigos formados no sistema solar. Descoberto em 2012 por cientistas do Instituto de Tecnologia da Califórnia, esse mineral era, até então, desconhecido pela ciência. O seu nome homenageia a antiga divindade chinesa Pan Gu, criador do yin e yang.
  
Composição
Este mineral possui a fórmula química (Ti4+,Sc,Al,Mg,Zr,Ca)1.8O3. Os elementos encontrados na panguite são titânio, escândio, alumínio, magnésio, zircónio, cálcio e oxigénio. Nas amostras retiradas do meteorito, também foram encontrados zircónio enriquecido. A panguite foi encontrada associada com um outro mineral identificado como davisite e com olivina agregada.

Origem e Propriedades
A panguite, está na classe dos minerais refratários, que se formaram sob altas temperaturas e pressões extremamente altas, o que ocorreu há mais ou menos 4500 milhões de anos atrás, no inicio do nosso sistema solar. Isso faz com que a panguite seja um dos minerais mais antigos de nosso Sistema Solar. O zircónio é um dos elementos determinantes para se saber as condições de antes e durante a formação do nosso sistema solar.

Descoberta 
Chi Ma, diretor da Divisão de Análise Cientifica Planetária e Geológica (Geological and Planetary Sciences Division Analytical Facility) do Instituto de Tecnologia da Califórnia (California Institute of tecnology), foi o principal autor do artigo referente à panguite, publicado no American Mineralogist. Chi Ma estava liderando uma pesquisa de Nano-Mineralogia desde o ano de 2007, em meteoritos primitivos, no qual se inclui o meteoro Allende. O mineral foi primeiramente descrito e submetido á apreciação na Conferência Anual de Ciência Planetária e Lunar (Lunar and Planetary Science Conference), ocorrida em 2011.

 
Allende meteorite - image by Matteo Chinellato; cube = 1 cm 
 
The Allende meteorite is the largest carbonaceous chondrite ever found on Earth. The fireball was witnessed at 01:05 on February 8, 1969, falling over the Mexican state of Chihuahua. After breaking up in the atmosphere, an extensive search for pieces was conducted and it is often described as "the best-studied meteorite in history". The Allende meteorite is notable for possessing abundant, large calcium-aluminium-rich inclusions, which are among the oldest objects formed in the Solar System.
Carbonaceous chondrites comprise about 4 percent of all meteorites observed to fall from space. Prior to 1969, the carbonaceous chondrite class was known from a small number of uncommon meteorites such as Orgueil, which fell in France in 1864. Meteorites similar to Allende were known, but many were small and poorly studied.
  
Fall
The original stone is believed to have been approximately the size of an automobile traveling towards the Earth at more than 10 miles per second. The fall occurred in the early morning hours of February 8, 1969. At 01:05 a huge, brilliant fireball approached from the southwest and lit the sky and ground for hundreds of miles. It exploded and broke up to produce thousands of fusion crusted individuals. This is typical of falls of large stones through the atmosphere and is due to the sudden braking effect of air resistance. The fall took place in northern Mexico, near the village of Pueblito de Allende in the state of Chihuahua. Allende stones became one of the most widely distributed meteorites and provided a large amount of material to study, far more than all of the previously known carbonaceous chondrite falls combined.

Path of the fireball and the area in northern Mexico where the meteorite pieces landed (the strewnfield)

Strewnfield
Stones were scattered over a huge area – one of the largest meteorite strewnfields known. This strewnfield measures approximately 8 by 50 kilometers. The region is desert, mostly flat, with sparse to moderate low vegetation. Hundreds of meteorites were collected shortly after the fall. Approximately 2 or 3 tonnes of specimens were collected over a period of more than 25 years. Some sources guess that an even larger amount was recovered (estimates as high as 5 tonnes can be found), but there is no way to make an accurate estimate. Even today, over 40 years later, specimens are still occasionally found. Fusion crusted individual Allende specimens ranged from 1 gram to 110 kilograms.
   
Study
Allende is often called "the best-studied meteorite in history." There are several reasons for this: Allende fell in early 1969, just months before the Apollo program was to return the first moon rocks. This was a time of great excitement and energy among planetary scientists. The field was attracting many new workers and laboratories were being improved. As a result, the scientific community was immediately ready to study the new meteorite. A number of museums launched expeditions to Mexico to collect samples, including the Smithsonian Institution and together they collected hundreds of kilograms of material with CAls. The CAls are billions of years old, and help to determine the age of the solar system. The CAls had very unusual isotopic compositions, with many being distinct from the Earth, Moon and other meteorites for a wide variety of isotopes. These "isotope anomalies" contain evidence for processes that occurred in other stars before the solar system formed.
Allende contains chondrules and CAls that are estimated to be 4.567 billion years old, the oldest known matter (other carbonaceous chondrites also contain these). This material is 30 million years older than the Earth and 287 million years older than the oldest rock known on Earth, Thus, the Allende meteorite has revealed information about conditions prevailing during the early formation of our solar system. Carbonaceous chondrites, including Allende, are the most primitive meteorites, and contain the most primitive known matter. They have undergone the least mixing and remelting since the early stages of solar system formation. Because of this, their age is frequently taken as the "age of the solar system."


Structure
The meteorite was formed from nebular dust and gas during the early formation of the solar system. It is a "stone" meteorite, as opposed to an "iron," or "stony iron," the other two general classes of meteorite. Most Allende stones are covered, in part or in whole, by a black, shiny crust created as the stone descended at great speed through the atmosphere as it was falling towards the earth from space. This causes the exterior of the stone to become very hot, melting it, and forming a glassy "fusion crust."
When an Allende stone is sawed into two pieces and the surface is polished, the structure in the interior can be examined. This reveals a dark matrix embedded throughout with mm-sized, lighter-colored chondrules, tiny stony spherules found only in meteorites and not in earth rock (thus it is a chondritic meteorite). Also seen are white inclusions, up to several cm in size, ranging in shape from spherical to highly irregular or "amoeboidal." These are known as calcium-aluminum-rich inclusions or "CAls", so named because they are dominantly composed of calcium- and aluminum-rich silicate and oxide minerals. Like many chondrites, Allende is a breccia, and contains many dark-colored clasts or "dark inclusions" which have a chondritic structure that is distinct from the rest of the meteorite. Unlike many other chondrites, Allende is almost completely lacking in Fe-Ni metal.
  
Chondrules of Allende
   
Composition
The matrix and the chondrules consist of many different minerals, predominantly olivine and pyroxene. Allende is classified as a CV3 carbonaceous chondrite: the chemical composition, which is rich in refractory elements like calcium, aluminum, and titanium, and poor in relatively volatile elements like sodium and potassium, places it in the CV group, and the lack of secondary heating effects is consistent with petrologic type 3 (see meteorites classification). Like most carbonaceous chondrites and all CV chondrites, Allende is enriched in the oxygen isotope O-16 relative to the less abundant isotopes, O-17 and O-18. In June 2012, researchers announced the discovery of another inclusion dubbed panguite, a hitherto unknown type of titanium dioxide mineral.
There was found to be a small amount of carbon (including graphite and diamond), and many organic compounds, including amino acids, some not known on Earth. Iron, mostly combined, makes up about 24% of the meteorite.

Subsequent reserch
Close examination of the chondrules in 1971, by a team from Case Western Reserve University, revealed tiny black markings, up to 10 trillion per square centimeter, which were absent from the matrix and interpreted as evidence of radiation damage. Similar structures have turned up in lunar basalts but not in their terrestrial equivalent which would have been screened from cosmic radiation by the Earth's atmosphere and geomagnetic field. Thus it appears that the irradiation of the chondrules happened after they had solidified but before the cold accretion of matter that took place during the early stages of formation of the solar system, when the parent meteorite came together.
The discovery at California Institute of Technology in 1977 of new forms of the elements calcium, barium and neodymium in the meteorite was believed to show that those elements came from some source outside the early clouds of gas and dust that formed the solar system. This supports the theory that shockwaves from a supernova - the explosion of an aging star - may have triggered the formation of, or contributed to the formation of our solar system. As further evidence, the Caltech group said the meteorite contained Aluminum 26, a rare form of aluminum. This acts as a "clock" on the meteorite, dating the explosion of the supernova to within less than 2 million years before the solar system was formed. Subsequent studies have found isotopic ratios of krypton, xenon, nitrogen and other elements that are also unknown in our solar system. The conclusion, from many studies with similar findings, is that there were a lot of substances in the presolar disc that were introduced as fine "dust" from nearby stars, including novas, supernovas, and red giants. These specks persist to this day in meteorites like Allende, and are known as presolar grains.

segunda-feira, novembro 30, 2020

O meteorito Sylacauga caiu, há 66 anos, em cima de um humano!

A slice of the meteorite, the National Museum of Natural History, the Smithsonian, DC
   
The Sylacauga meteorite fell on November 30, 1954, at 14:46 local time (18:46 UT) in Oak Grove, Alabama, near Sylacauga. It is commonly called the Hodges meteorite because a fragment of it struck Ann Elizabeth Hodges (1920–1972).

Importance
The Sylacauga meteorite is the first documented extraterrestrial object to have injured a human being in the USA. The grapefruit-sized fragment crashed through the roof of a frame house, bounced off a large wooden console radio, and hit Hodges while she napped on a couch. The 34-year-old woman was badly bruised on one side of her body but able to walk. The event received worldwide publicity.
The Sylacauga meteorite is not the only extraterrestrial object to have struck a human. A manuscript published at Tortona, Italy, in 1677 tells of a Milanese friar who was killed by a meteorite. In 1992 a small meteorite fragment (3 g) hit a young Ugandan boy in Mbale, but it had been slowed down by a tree and did not cause any injury.

Fireball
The meteor made a fireball visible from three states as it streaked through the atmosphere, even though it fell early in the afternoon. There were also indications of an air blast, as witnesses described hearing "explosions or loud booms".

Following events
The United States Air Force sent a helicopter to take the meteorite. Eugene Hodges, the husband of the woman who was struck, hired a lawyer to get it back. The Hodges' landlord, Bertie Guy, also claimed it, wanting to sell it to cover the damage to the house. There were offers of up to $5,000 for the meteorite. By the time it was returned to the Hodgeses, over a year later, public attention had diminished, and they were unable to find a buyer willing to pay.
Ann Hodges was uncomfortable with the public attention and the stress of the dispute over ownership of the meteorite. She donated it to the Alabama Museum of Natural History in 1956.
The day after the fall, local African-American farmer Julius McKinney came upon the second-largest fragment from the same meteorite. An Indianapolis-based lawyer purchased it for the Smithsonian Institution. The McKinney family was able to use the money to purchase a car, new house, and land.

Fragments
Upon the entry within the atmosphere the Sylacauga meteorite fragmented in at least 3 pieces:
  • The Hodges fragment (3.86 kilograms - 33°11′18.1″N 86°17′40.2″W) struck Ann Elizabeth Hodges.
  • The McKinney fragment (1.68 kilograms - 33°13′08.4″N 86°17′20.7″W) was found the next day December 1, 1954 by Julius Kempis McKinney, an African-American farmer, who sold the meteorite fragment he found to purchase a house and more land.
  • A third fragment is believed to have impacted somewhere near Childersburg (a few km north-west of Oak Grove).

Classification
The Sylacauga meteorite is classified as an ordinary chondrite of H4 group.

Orbit
The meteoroid came in on the sunward side of the Earth, so when it hit it had passed the perihelion and was travelling outward from the Sun. Considering the orbit estimations, the best candidate as parent body is 1685 Toro.


Ed Howard, then Sylacauga mayor, Ann Hodges and then Sylacauga Police Chief W.D. Ashcraft pose with a meteorite underneath the point where it crashed through Hodges' house in 1954

Moody Jacobs shows a giant bruise on the side and hip of his patient, Ann Hodges, in 1954, after she was struck by a meteorite


Interior view of a hole in the ceiling of the rental home where Ann Elizabeth Hodges and her husband lived, through which she was struck by a falling meteorite, Sylacauga, Alabama

segunda-feira, setembro 14, 2020

Notícia interessante sobre impactes meteoríticos e origem da vida

A vida na Terra pode ter “nascido” nas crateras de meteorito
   
   
Os impactos de asteróides causaram alguns dos maiores eventos destrutivos da história da Terra. Agora, um novo estudo mostra que esses impactos também podem ter fornecido as condições certas para a vida começar no nosso planeta.
A maioria dos dinossauros foi extinta devido ao impacto de um asteroide gigante, quando um objeto atingiu a ponta norte da Península de Iucatão há cerca de 66 milhões de anos. Mas e se os impactos de asteroides também fossem responsáveis pelo desenvolvimento da vida na Terra?
“Se pedir a alguém que imagine o que acontece quando pedaços de rocha do tamanho de um quilómetro atingem a Terra, isso é tipicamente destrutivo. É um evento de extinção como aquele que matou os dinossauros”, disse Gordon Osinski, cientista planetário da Western University, citado pelo Western News.
“O que estamos a tentar fazer é transformar essa ideia. O impacto é inicialmente destrutivo, mas também fornece os blocos de construção para a vida e cria novos habitats para a vida. Essencialmente criam um oásis para a vida“, continuou.
As condições imediatamente após um impacto teriam sido um pesadelo para qualquer forma de vida que existia antes da queda. Toneladas de destroços teriam sido lançadas para a atmosfera. A rocha derretida no chão da cratera queimaria tudo em que tocasse e libertaria gases venenosos para o ar.
Depois de a rocha arrefecer e essas condições se estabilizarem, pode ter sido deixado para trás o ambiente ideal para a vida microbiana se desenvolver e prosperar.
De acordo com o estudo, conforme o lago da cratera se forma na bacia de impacto, a combinação de água, calor, minerais e produtos químicos formaria condições em que os micróbios teriam um ambiente seguro e uma fonte abundante de energia.
“Mostrámos que os impactos podem fornecer todos os blocos de construção necessários para a vida e criar habitats para a vida imediatamente após o impacto”, escreveu Osinski, num e-mail enviado ao The Weather Network.
Esses habitats incluem “sistemas hidrotérmicos transitórios”, semelhantes às fontes hidrotermais no fundo do oceano ao longo da dorsal mesoatlântica, e fontes termais e géiseres no Parque Nacional de Yosemite, mas de natureza mais temporária devido para o impacto
Outros incluem “habitats endolíticos”, onde a vida se pode desenvolver dentro dos poros e fissuras em rochas de impacto vítreas e dentro de ilhas flutuantes de pedra-pomes porosa, onde seriam protegidos da radiação ultravioleta prejudicial do Sol.
Além disso, as piscinas rochosas formadas nos fluxos vulcânicos de arrefecimento, onde a água se pode acumular, fornecem excelentes ambientes seguros.
A partir do seu estudo das crateras de meteoritos na Terra, Osinski e a sua equipa mostraram que os impactos podem produzir qualquer um ou todos estes ambientes. “O principal aqui é que estes habitats não existiam antes do impacto e não existiriam a menos que ocorresse um impacto”, disse Osinski.
Saber como a vida começou na Terra não só nos ajuda a rastrear as nossas próprias origens, mas também pode ajudar na nossa busca por vida noutro lugar. As missões a Marte, por exemplo, podem procurar oásis semelhantes na sua busca por vida passada ou presente.
Este estudo foi publicado este mês na revista científica Astrobiology.
    
in ZAP.pt

segunda-feira, agosto 31, 2020

Notícia interessante sobre meteoritos...

Meteorito colorido está a suscitar dúvidas sobre a origem da vida
    
    
Em abril de 2019, um meteoro colorido atingiu a Costa Rica. A rocha, que está a ser analisada por cientistas, destaca-se por pertencer a uma classe rara de condritos carbonáceos, e por conter uma possível presença de aminoácidos essenciais à construção da vida.
O meteoro que atingiu a Terra partiu-se mesmo antes de chegar ao solo. Os fragmentos acabaram por se espalhar nas aldeias de La Palmera e Aguas Zarcas, na Costa Rica. Para homenagear o local, foram batizados com o nome da aldeia: Aguas Zarcas.
Segundo a Space.com, embora haja meteoritos a colidir com a Terra um pouco por todo o lado, estes fragmentos parecem ser especiais. É que o asteroide que os gerou era um fragmento remanescente do início do sistema solar.
O meteorito pertence a uma classe rara chamada condritos carbonáceos, originados nas primeiras horas de vida do Sistema Solar. Este tipo de rocha espacial contém compostos de carbono complexos, que podem incluir aminoácidos – capazes de se unir para formar proteínas e ADN – e talvez outros elementos de construção da vida.
Enquanto outros pedaços rochosos do sistema solar acabam por se tornar partes de planetas, este permaneceu intacto. O meteorito apenas se alterou com o tempo, através de reações químicas impulsionadas pela luz solar. Estas mudanças estimularam a criação de compostos químicos cada vez mais complexos.
Em 1969, na Austrália, explodiu o meteoro Murchison, que apresenta características semelhantes. Num artigo para a Science, Joshua Sokol revela que a análise aos elementos químicos que compõe este tipo de meteoritos, pode ter ajudado a formar a ideia de que a vida teve origem no espaço. Tal como o meteorito Murchison, este fragmento de Aguas Zarcas contém poeira da antiga Via Láctea, antes do Sol se formar.
O jornalista explica que os estudos deste novo meteorito ainda estão incompletos. Contudo os investigadores estão entusiasmados com a possibilidade de o examinar através de técnicas mais modernas. A expectativa é encontrar, além dos aminoácidos, proteínas – o que seria um passo importante para entender como a vida surgiu.
Os fragmentos do novo meteoro podem oferecer as amostras mais puras do início do sistema solar e da nuvem de poeira pré-solar. “Esses restos de asteroides deverão ser realmente puros, pois podem nunca ter tocado na atmosfera ou ter-se instalado no solo”, escreveu Sokol.
Sokol espera que no futuro outras amostras originais possam ficar disponíveis para análise. A sonda japonesa Hayabusa2 – lançada em 2014 – tem o objetivo de analisar o asteroide Ryugu, uma amostra que pode conter condrito carbonáceo.
Também em 2023, a NASA irá retomar a análise das suas próprias amostras de um asteroide semelhante – o Bennu – que Sokol acredita estar relacionado com Aguas Zarcas.
Mas por enquanto, este fragmento é a melhor fonte disponível para análise.

in ZAP

sábado, janeiro 18, 2020

Notícia sobre astrogeologia interessante...

O material mais antigo já descoberto na Terra é mais velho do que o Sol

Os grãos da poeira encontrada
  
Um grupo de cientistas descobriu, num meteorito que caiu há mais de 50 anos na Austrália, poeira estelar que é o material mais antigo até agora encontrado na Terra, anunciou esta semana o Field Museum, de Chicago, Estados Unidos.
A poeira estelar, que os investigadores calculam ter entre cinco e sete mil milhões de anos, encontrada no meteorito “é o material sólido mais antigo já encontrado e conta-nos como é que as estrelas se formaram na nossa galáxia”, disse Philipp Heck, curador do Field Museum e professor associado da Universidade de Chicago.
Comparativamente, a idade do Sol está estimada em 4,6 mil milhões de anos e a da Terra em 4,5 mil milhões de anos. O portal Science Alert frisa que a poeira encontrada é algumas centenas de anos mais antiga do que o próprio Sistema Solar.
As estrelas formam-se a partir de nuvens de poeira e gás e quando morrem produzem também nuvens de poeira cósmica, que voltam a formar outros corpos celestes, como novas estrelas, planetas, luas ou meteoritos.
Philipp Heck e a sua equipa analisaram o meteorito – que caiu no estado australiano de Victoria em 28 de setembro de 1969 – e encontraram partículas denominadas ‘grãos minerais pré-solares’, anteriores à formação do Sol, que terão ficado presas no meteorito e que já tinham sido isolados há cerca de 30 anos na Universidade Chicago.
De acordo com os investigadores, grãos pré-solares são encontrados em apenas cerca de cinco por cento dos meteoritos que caíram na Terra.
Jennika Greer, estudante do Field Museum e da Universidade Chicago e coautora do estudo, explica, num comunicado do Field Museum, que o processo de análise do material presente no meteorito “começa com a trituração de fragmentos do meteorito até ficarem em pó, que se torna numa espécie de pasta e cheira a manteiga de amendoim podre”. A ‘pasta’ é depois dissolvida em ácido até restarem apenas os grãos pré-solares.
Philipp Heck adianta que os grãos pré-solares foram analisados para detetar o seu tempo de exposição a raios cósmicos, que interagem com a matéria e formam novos elementos. “Quanto mais tempo estiverem expostos, mais elementos se formam”, explicou.
“Com este estudo, determinamos diretamente a vida útil da poeira estelar. Esperamos que investigadores possam usá-lo como ponto de partida para modelos de todo o ciclo de vida galáctico”, disse o cientista.
Os resultados da investigação foram esta semana publicados na revista científica PNAS.

in ZAP

sábado, novembro 30, 2019

O meteorito Sylacauga caiu há 65 anos - em cima de um humano!

A slice of the meteorite, the National Museum of Natural History, the Smithsonian, DC

The Sylacauga meteorite fell on November 30, 1954, at 14:46 local time (18:46 UT) in Oak Grove, Alabama, near Sylacauga. It is commonly called the Hodges meteorite because a fragment of it struck Ann Elizabeth Hodges (1920–1972).

Importance
The Sylacauga meteorite is the first documented extraterrestrial object to have injured a human being in the USA. The grapefruit-sized fragment crashed through the roof of a frame house, bounced off a large wooden console radio, and hit Hodges while she napped on a couch. The 34-year-old woman was badly bruised on one side of her body but able to walk. The event received worldwide publicity.
The Sylacauga meteorite is not the only extraterrestrial object to have struck a human. A manuscript published at Tortona, Italy, in 1677 tells of a Milanese friar who was killed by a meteorite. In 1992 a small meteorite fragment (3 g) hit a young Ugandan boy in Mbale, but it had been slowed down by a tree and did not cause any injury.

Fireball
The meteor made a fireball visible from three states as it streaked through the atmosphere, even though it fell early in the afternoon. There were also indications of an air blast, as witnesses described hearing "explosions or loud booms".

Following events
The United States Air Force sent a helicopter to take the meteorite. Eugene Hodges, the husband of the woman who was struck, hired a lawyer to get it back. The Hodges' landlord, Bertie Guy, also claimed it, wanting to sell it to cover the damage to the house. There were offers of up to $5,000 for the meteorite. By the time it was returned to the Hodgeses, over a year later, public attention had diminished, and they were unable to find a buyer willing to pay.
Ann Hodges was uncomfortable with the public attention and the stress of the dispute over ownership of the meteorite. She donated it to the Alabama Museum of Natural History in 1956.
The day after the fall, local African-American farmer Julius McKinney came upon the second-largest fragment from the same meteorite. An Indianapolis-based lawyer purchased it for the Smithsonian Institution. The McKinney family was able to use the money to purchase a car, new house, and land.

Fragments
Upon the entry within the atmosphere the Sylacauga meteorite fragmented in at least 3 pieces:
  • The Hodges fragment (3.86 kilograms - 33°11′18.1″N 86°17′40.2″W) struck Ann Elizabeth Hodges.
  • The McKinney fragment (1.68 kilograms - 33°13′08.4″N 86°17′20.7″W) was found the next day December 1, 1954 by Julius Kempis McKinney, an African-American farmer, who sold the meteorite fragment he found to purchase a house and more land.
  • A third fragment is believed to have impacted somewhere near Childersburg (a few km north-west of Oak Grove).

Classification
The Sylacauga meteorite is classified as an ordinary chondrite of H4 group.

Orbit
The meteoroid came in on the sunward side of the Earth, so when it hit it had passed the perihelion and was travelling outward from the Sun. Considering the orbit estimations, the best candidate as parent body is 1685 Toro.


Ed Howard, then Sylacauga mayor, Ann Hodges and then Sylacauga Police Chief W.D. Ashcraft pose with a meteorite underneath the point where it crashed through Hodges' house in 1954

Moody Jacobs shows a giant bruise on the side and hip of his patient, Ann Hodges, in 1954, after she was struck by a meteorite


Interior view of a hole in the ceiling of the rental home where Ann Elizabeth Hodges and her husband lived, through which she was struck by a falling meteorite, Sylacauga, Alabama

sexta-feira, fevereiro 08, 2019

O meteorito Allende caiu há 50 anos

Fragmento do meteorito Allende

Allende é um meteorito caído no estado mexicano de Chihuahua. A sua queda ocorreu às 01.05 horsas do dia 8 de fevereiro de 1969, e a bola de fogo originada pela sua entrada na atmosfera terrestre foi testemunhada por milhares de pessoas.
O meteorito Allende é o maior condrito (tipo de meteorito primitivo) já descoberto. Como resultado de uma pesquisa neste meteorito, foi descoberto um novo óxido de titânio e esse mineral foi batizado de Panguite.


Panguite é um mineral constituído de óxido de titânio encontrado a partir de pesquisas feitas no meteorito Allende, caído no estado mexicano de Chihuahua em 8 de fevereiro de 1969. Acredita-se que este mineral esteja entre os mais antigos formados no sistema solar. Descoberto em 2012 por cientistas do Instituto de Tecnologia da Califórnia, esse mineral era, até então, desconhecido pela ciência. O seu nome homenageia a antiga divindade chinesa Pan Gu, criador do yin e yang.
  
Composição
Este mineral possui a fórmula química (Ti4+,Sc,Al,Mg,Zr,Ca)1.8O3. Os elementos encontrados na panguite são titânio, escândio, alumínio, magnésio, zircónio, cálcio e oxigénio. Nas amostras retiradas do meteorito, também foram encontrados zircónio enriquecido. A panguite foi encontrada associada com um outro mineral identificado como davisite e com olivina agregada.

Origem e Propriedades
A panguite, está na classe dos minerais refratários, que se formaram sob altas temperaturas e pressões extremamente altas, o que ocorreu há mais ou menos 4500 milhões de anos atrás, no inicio do nosso sistema solar. Isso faz com que a panguite seja um dos minerais mais antigos de nosso Sistema Solar. O zircónio é um dos elementos determinantes para se saber as condições de antes e durante a formação do nosso sistema solar.

Descoberta 
Chi Ma, diretor da Divisão de Análise Cientifica Planetária e Geológica (Geological and Planetary Sciences Division Analytical Facility) do Instituto de Tecnologia da Califórnia (California Institute of tecnology), foi o principal autor do artigo referente à panguite, publicado no American Mineralogist. Chi Ma estava liderando uma pesquisa de Nano-Mineralogia desde o ano de 2007, em meteoritos primitivos, no qual se inclui o meteoro Allende. O mineral foi primeiramente descrito e submetido á apreciação na Conferência Anual de Ciência Planetária e Lunar (Lunar and Planetary Science Conference), ocorrida em 2011.

sábado, fevereiro 02, 2019

Notícia sobre meteorito

Meteorito cai em Cuba. Bola de fogo foi observada durante 10 minutos até explodir em pequenos fragmentos

O fenómeno pouco comum aconteceu na zona oeste da ilha, na sexta-feira. O meteorito desintegrou-se em numerosos fragmentos, o maior com 11 centímetros. Não há registo de feridos ou danos materiais.

O Ministério da Ciência, Tecnologia e Meio Ambiente de Cuba confirmou a queda de um meteorito na zona oeste da ilha, na sexta-feira, que se desintegrou em numerosos fragmentos dispersos pela província de Pinar del Río.
A queda do meteorito foi observada por sete estações meteorológicas em Pinar del Río, durante dez minutos.


O meteorito deixou um rasto, uma espécie de uma bola de fogo que sulcou o céu, registando-se posteriormente uma forte explosão, de acordo com um comunicado das autoridades. O fenómeno foi registado em vários vídeos amadores, publicados na Internet e replicados por várias televisões locais.
O episódio ocorreu no município de Vinales, de acordo com a análise realizada por especialistas do Ministério, do Instituto de Geofísica e Astronomia e de outras instituições científicas.
O meteorito julga-se ser do tipo pétreo, com uma liga de ferro e níquel, possuindo também uma grande quantidade de silicato de magnésio.
 
Os fragmentos atingiram as cidades de Los Jazmines, Dos Hermanas, El Guajaní, perto da cidade turística de Vinales e El Palmarito, onde se encontrou o maior fragmento, com cerca de 11 centímetros de comprimento, que deixou uma pequena cratera no solo. Nas redes sociais, várias pessoas partilharam fotos desses pequenos pedaços. As que vê abaixo foram publicadas pelo correspondente da CNN em Cuba.
Os especialistas recolheram amostras que vão ser submetidas a testes químicos, para se perceber maior precisão este fenómeno que, apesar de ser incomum, não é a primeira vez que acontece na ilha.



terça-feira, outubro 09, 2018

Pedra usada como calço era, afinal, um meteorito de 100 mil dólares


Uma professora da Universidade do Michigan, nos EUA, descobriu que uma pedra usada como calço nos últimos 30 anos era, na realidade, um meteorito que poderá valer cerca de 100 mil dólares.
De acordo com o Huffington PostMona Sirbescu, professora de Geologia da Universidade do Michigan, nos EUA, conta que, quando viu a pedra pela primeira vez, percebeu logo que “havia ali alguma coisa especial”.
“É o espécime mais valioso que já vi na minha vida, monetária e cientificamente”, disse Sirbescu num comunicado divulgado pela universidade.
A pedra, que afinal era um meteorito, pertencia a um homem de Grand Rapids, no Michigan, que preferiu manter o anonimato, que a levou à docente para ser examinada durante este ano.
Geralmente, a professora tem muitos destes pedidos, no entanto, “há 18 anos que a resposta é categoricamente ‘não'”, disse, citada na mesma nota.
O norte-americano contou à professora que tinha aquela pedra desde 1988, quando comprou uma quinta em Edmore, também no Michigan. O antigo dono dessa propriedade contou-lhe que era um meteorito que ele e o seu pai tinham avistado nos anos 30.
O homem contou a Sirbescu que ficou com a pedra nos 30 anos seguintes, mesmo depois de se ter mudado daquela quinta, e que a usava como calço ou para fazer apresentações na escola dos filhos.
Recentemente, o homem começou a ler histórias de pessoas que encontravam e vendiam pedaços de meteoritos, o que o levou a tentar confirmar a origem daquela rocha e se valeria alguma coisa, conta a universidade.
Trata-se de um meteorito com aproximadamente 88% de ferro e 12% de níquel, uma  avaliação depois validada por Catherine Corrigan, geóloga do Instituto Smithsonian, em Washigton.
O dono do meteorito, avaliado em cerca de 100 mil dólares, está a pensar vendê-lo a um museu ou colecionador, e já prometeu que vai doar 10% da receita à universidade.


in ZAP

sábado, junho 30, 2018

O Evento de Tunguska foi há 110 anos

Árvores caídas após a explosão (foto tirada durante a expedição de Kulik, em 1927)
  
O Evento de Tunguska foi uma queda de um objeto celeste que aconteceu em uma região da Sibéria próxima ao rio Podkamennaya Tunguska em 30 de junho de 1908. A queda provocou uma grande explosão, devastando uma área de milhares de quilómetros quadrados. A ausência de uma cratera e de evidências diretas do objeto que teria causado a explosão levou a uma grande quantidade de teorias especulativas sobre a causa do evento. Apesar de ainda ser assunto de debate, segundo os estudos mais recentes a destruição provavelmente foi causada pelo deslocamento de ar subsequente a uma explosão de um meteorito ou fragmento de cometa a uma altitude de 5 a 10 km na atmosfera, devido ao atrito da reentrada. Diferentes estudos resultaram em estimativas para o tamanho do objeto variando em torno de algumas dezenas de metros.
Estima-se que a energia da explosão está entre 5 megatons e 30 megatons de TNT, com 10–15 megatons sendo o valor mais provável. Isso é aproximadamente igual a 1000 vezes a bomba lançada em Hiroshima na segunda guerra mundial e aproximadamente um terço da Bomba Csar, a mais poderosa arma nuclear já detonada. A explosão teria sido suficiente para destruir uma grande área metropolitana. A explosão derrubou cerca de 80 milhões de árvores em uma área e 2150 quilómetros quadrados e estima-se que tenha provocado um terramoto 5,0 na escala de Richter.
Apesar de ser considerado o maior impacto terrestre na história recente da Terra, impactos de intensidade similar em regiões remotas teriam passado despercebidos antes do advento do monitorização global por satélite nas décadas de 60 e 70.
Localização aproximada do evento de Tunguska, na Sibéria

  
A natureza do objeto que se chocou com a terra, meteoróide ou cometária, foi objeto de pesquisa ao longo do século XX e ainda é assunto de debate. Em 1930, o astrónomo F. J. W. Whipple sugeriu que o impacto teria sido com um pequeno cometa, um objeto composto primariamente de poeira e gelo, que teria sido completamente vaporizado na atmosfera, não deixando traços óbvios. Essa hipótese recebeu suporte a partir da observação de brilhos noturnos no céu da Europa por muitas noites após o evento, que poderiam ser explicados pela luz do sol refletida no gelo e poeira dispersada pela cauda do cometa na alta atmosfera.
Em 1978, o astrónomo Lubor Kresák sugeriu que o corpo fosse um fragmento do cometa Encke, responsável pela chuva de meteoros anual conhecida como beta taurídeos. O evento coincidiu com um pico de atividade dessa chuva de meteoros e a trajetória estimada para o objeto que causou a explosão de Tunguska é consistente com o que seria esperado de um fragmento desse cometa. Sabe-se que objetos dessa natureza explodem com frequência na alta atmosfera. Tais explosões são observadas por satélites militares há décadas.
Em 1983, o astrónomo Zdeněk Sekanina publicou artigos criticando a hipótese cometária. Ele apontou que um corpo composto de material cometário seguindo a trajetória observada teria sido desintegrado em grandes altitudes, enquanto é sabido que o objeto de Tunguska atingiu a baixa atmosfera antes de desintegrar. Sekanina argumentou que as evidências conhecidas apontavam para um objeto denso, feito de rocha, provavelmente um fragmento de asteroide. Essa hipótese foi ainda suportada em 2001, quando Farinella, Foschini, et al. divulgaram seu estudo sugerindo que a trajetória do objeto é consistente com uma origem no cinturão de asteroides.
Proponentes da teoria cometária sugeriram que o objeto poderia ser um cometa extinto com um manto rochoso que o teria protegido até atingir a baixa atmosfera.
A principal dificuldade com a hipótese do asteroide é que um objeto rochoso teria produzido uma grande cratera num impacto tão energético, e nenhuma cratera foi encontrada. Hipóteses foram feitas, e posteriormente corroboradas por modelos de Christopher Chyba e outros pesquisadores, de que é possível que a passagem do asteroide pela atmosfera teria provocado pressões e temperaturas tão altas que ele tenha sido completamente desintegrado, a energia do impacto toda liberada na atmosfera e o material espalhado na alta atmosfera explicaria a luminosidade noturna observada na Europa.
Durante os anos 90, pesquisadores italianos extraíram resina das árvores recolhidas na área do impacto e encontraram altas taxas de materiais commumente encontrados em asteroides e raramente encontrados em cometas.
   

domingo, novembro 30, 2014

Há 60 anos um meteorito atingiu um ser humano nos Estados Unidos

A slice of the meteorite, the National Museum of Natural History, the Smithsonian, DC

The Sylacauga meteorite fell on November 30, 1954, at 14:46 local time (18:46 UT) in Oak Grove, Alabama, near Sylacauga. It is commonly called the Hodges meteorite because a fragment of it struck Ann Elizabeth Hodges (1920–1972).

Importance
The Sylacauga meteorite is the first documented extraterrestrial object to have injured a human being in the USA. The grapefruit-sized fragment crashed through the roof of a frame house, bounced off a large wooden console radio, and hit Hodges while she napped on a couch. The 34-year-old woman was badly bruised on one side of her body but able to walk. The event received worldwide publicity.
The Sylacauga meteorite is not the only extraterrestrial object to have struck a human. A manuscript published at Tortona, Italy, in 1677 tells of a Milanese friar who was killed by a meteorite. In 1992 a small meteorite fragment (3 g) hit a young Ugandan boy in Mbale, but it had been slowed down by a tree and did not cause any injury.

Fireball
The meteor made a fireball visible from three states as it streaked through the atmosphere, even though it fell early in the afternoon. There were also indications of an air blast, as witnesses described hearing "explosions or loud booms".

Following events
The United States Air Force sent a helicopter to take the meteorite. Eugene Hodges, the husband of the woman who was struck, hired a lawyer to get it back. The Hodges' landlord, Bertie Guy, also claimed it, wanting to sell it to cover the damage to the house. There were offers of up to $5,000 for the meteorite. By the time it was returned to the Hodgeses, over a year later, public attention had diminished, and they were unable to find a buyer willing to pay.
Ann Hodges was uncomfortable with the public attention and the stress of the dispute over ownership of the meteorite. She donated it to the Alabama Museum of Natural History in 1956.
The day after the fall, local African-American farmer Julius McKinney came upon the second-largest fragment from the same meteorite. An Indianapolis-based lawyer purchased it for the Smithsonian Institution. The McKinney family was able to use the money to purchase a car, new house, and land.

Fragments
Upon the entry within the atmosphere the Sylacauga meteorite fragmented in at least 3 pieces:

  • The Hodges fragment (3.86 kilograms - 33°11′18.1″N 86°17′40.2″W) struck Ann Elizabeth Hodges.
  • The McKinney fragment (1.68 kilograms - 33°13′08.4″N 86°17′20.7″W) was found the next day December 1, 1954 by Julius Kempis McKinney, an African-American farmer, who sold the meteorite fragment he found to purchase a house and more land.
  • A third fragment is believed to have impacted somewhere near Childersburg (a few km north-west of Oak Grove).


Classification
The Sylacauga meteorite is classified as an ordinary chondrite of H4 group.

Orbit
The meteoroid came in on the sunward side of the Earth, so when it hit it had passed the perihelion and was travelling outward from the Sun. Considering the orbit estimations, the best candidate as parent body is 1685 Toro.



Ed Howard, then Sylacauga mayor, Ann Hodges and then Sylacauga Police Chief W.D. Ashcraft pose with a meteorite underneath the point where it crashed through Hodges' house in 1954


Moody Jacobs shows a giant bruise on the side and hip of his patient, Ann Hodges, in 1954, after she was struck by a meteorite

sábado, fevereiro 08, 2014

O meteorito mais bem estudado da história caiu há 45 anos em Allende, México

Allende fragment

The Allende meteorite is the largest carbonaceous chondrite ever found on Earth. The fireball was witnessed at 01:05 on February 8, 1969, falling over the Mexican state of Chihuahua. After breaking up in the atmosphere, an extensive search for pieces was conducted and it is often described as "the best-studied meteorite in history". The Allende meteorite is notable for possessing abundant, large calcium-aluminium-rich inclusions, which are among the oldest objects formed in the Solar System.
Carbonaceous chondrites comprise about 4 percent of all meteorites observed to fall from space. Prior to 1969, the carbonaceous chondrite class was known from a small number of uncommon meteorites such as Orgueil, which fell in France in 1864. Meteorites similar to Allende were known, but many were small and poorly studied.
  
Fall
The original stone is believed to have been approximately the size of an automobile traveling towards the Earth at more than 10 miles per second. The fall occurred in the early morning hours of February 8, 1969. At 01:05 a huge, brilliant fireball approached from the southwest and lit the sky and ground for hundreds of miles. It exploded and broke up to produce thousands of fusion crusted individuals. This is typical of falls of large stones through the atmosphere and is due to the sudden braking effect of air resistance. The fall took place in northern Mexico, near the village of Pueblito de Allende in the state of Chihuahua. Allende stones became one of the most widely distributed meteorites and provided a large amount of material to study, far more than all of the previously known carbonaceous chondrite falls combined.

Path of the fireball and the area in northern Mexico where the meteorite pieces landed (the strewnfield)

Strewnfield
Stones were scattered over a huge area – one of the largest meteorite strewnfields known. This strewnfield measures approximately 8 by 50 kilometers. The region is desert, mostly flat, with sparse to moderate low vegetation. Hundreds of meteorites were collected shortly after the fall. Approximately 2 or 3 tonnes of specimens were collected over a period of more than 25 years. Some sources guess that an even larger amount was recovered (estimates as high as 5 tonnes can be found), but there is no way to make an accurate estimate. Even today, over 40 years later, specimens are still occasionally found. Fusion crusted individual Allende specimens ranged from 1 gram to 110 kilograms.
   
Study
Allende is often called "the best-studied meteorite in history." There are several reasons for this: Allende fell in early 1969, just months before the Apollo program was to return the first moon rocks. This was a time of great excitement and energy among planetary scientists. The field was attracting many new workers and laboratories were being improved. As a result, the scientific community was immediately ready to study the new meteorite. A number of museums launched expeditions to Mexico to collect samples, including the Smithsonian Institution and together they collected hundreds of kilograms of material with CAls. The CAls are billions of years old, and help to determine the age of the solar system. The CAls had very unusual isotopic compositions, with many being distinct from the Earth, Moon and other meteorites for a wide variety of isotopes. These "isotope anomalies" contain evidence for processes that occurred in other stars before the solar system formed.
Allende contains chondrules and CAls that are estimated to be 4.567 billion years old, the oldest known matter (other carbonaceous chondrites also contain these). This material is 30 million years older than the Earth and 287 million years older than the oldest rock known on Earth, Thus, the Allende meteorite has revealed information about conditions prevailing during the early formation of our solar system. Carbonaceous chondrites, including Allende, are the most primitive meteorites, and contain the most primitive known matter. They have undergone the least mixing and remelting since the early stages of solar system formation. Because of this, their age is frequently taken as the "age of the solar system."
   
Allende meteorite - image by Matteo Chinellato; cube = 1 cm
   
Structure
The meteorite was formed from nebular dust and gas during the early formation of the solar system. It is a "stone" meteorite, as opposed to an "iron," or "stony iron," the other two general classes of meteorite. Most Allende stones are covered, in part or in whole, by a black, shiny crust created as the stone descended at great speed through the atmosphere as it was falling towards the earth from space. This causes the exterior of the stone to become very hot, melting it, and forming a glassy "fusion crust."
When an Allende stone is sawed into two pieces and the surface is polished, the structure in the interior can be examined. This reveals a dark matrix embedded throughout with mm-sized, lighter-colored chondrules, tiny stony spherules found only in meteorites and not in earth rock (thus it is a chondritic meteorite). Also seen are white inclusions, up to several cm in size, ranging in shape from spherical to highly irregular or "amoeboidal." These are known as calcium-aluminum-rich inclusions or "CAls", so named because they are dominantly composed of calcium- and aluminum-rich silicate and oxide minerals. Like many chondrites, Allende is a breccia, and contains many dark-colored clasts or "dark inclusions" which have a chondritic structure that is distinct from the rest of the meteorite. Unlike many other chondrites, Allende is almost completely lacking in Fe-Ni metal.

Chondrules of Allende
   
Composition
The matrix and the chondrules consist of many different minerals, predominantly olivine and pyroxene. Allende is classified as a CV3 carbonaceous chondrite: the chemical composition, which is rich in refractory elements like calcium, aluminum, and titanium, and poor in relatively volatile elements like sodium and potassium, places it in the CV group, and the lack of secondary heating effects is consistent with petrologic type 3 (see meteorites classification). Like most carbonaceous chondrites and all CV chondrites, Allende is enriched in the oxygen isotope O-16 relative to the less abundant isotopes, O-17 and O-18. In June 2012, researchers announced the discovery of another inclusion dubbed panguite, a hitherto unknown type of titanium dioxide mineral.
There was found to be a small amount of carbon (including graphite and diamond), and many organic compounds, including amino acids, some not known on Earth. Iron, mostly combined, makes up about 24% of the meteorite.

Subsequent reserch
Close examination of the chondrules in 1971, by a team from Case Western Reserve University, revealed tiny black markings, up to 10 trillion per square centimeter, which were absent from the matrix and interpreted as evidence of radiation damage. Similar structures have turned up in lunar basalts but not in their terrestrial equivalent which would have been screened from cosmic radiation by the Earth's atmosphere and geomagnetic field. Thus it appears that the irradiation of the chondrules happened after they had solidified but before the cold accretion of matter that took place during the early stages of formation of the solar system, when the parent meteorite came together.
The discovery at California Institute of Technology in 1977 of new forms of the elements calcium, barium and neodymium in the meteorite was believed to show that those elements came from some source outside the early clouds of gas and dust that formed the solar system. This supports the theory that shockwaves from a supernova - the explosion of an aging star - may have triggered the formation of, or contributed to the formation of our solar system. As further evidence, the Caltech group said the meteorite contained Aluminum 26, a rare form of aluminum. This acts as a "clock" on the meteorite, dating the explosion of the supernova to within less than 2 million years before the solar system was formed. Subsequent studies have found isotopic ratios of krypton, xenon, nitrogen and other elements that are also unknown in our solar system. The conclusion, from many studies with similar findings, is that there were a lot of substances in the presolar disc that were introduced as fine "dust" from nearby stars, including novas, supernovas, and red giants. These specks persist to this day in meteorites like Allende, and are known as presolar grains.