Mostrar mensagens com a etiqueta condritos. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta condritos. Mostrar todas as mensagens

quarta-feira, outubro 23, 2024

Há novidades sobre a origem dos meteoritos...

Finalmente sabemos de onde veio a maioria dos meteoritos da Terra

 

 

Até agora, apenas uma pequena fração dos meteoritos que aterram na Terra tinha sido firmemente ligada ao seu corpo progenitor no espaço - mas um conjunto de novos estudos acaba de nos dar evidências convincentes da origem de mais de 90% dos meteoritos atuais.

Segundo o Science Alert, as análises anteriores de meteoritos que atingem o nosso planeta sugerem algum tipo de origem partilhada. São feitos de materiais muito semelhantes e foram cozidos por radiação cósmica durante um período de tempo suspeitosamente curto, sugerindo uma separação relativamente recente de corpos progenitores partilhados.

As equipas responsáveis por três novos artigos, publicados em setembro na Astronomy and Astrophysics [artigo 1], e em outubro na Nature [artigo 2, artigo 3] e utilizaram uma combinação de observações telescópicas muito detalhadas e simulações de modelos informáticos para comparar asteroides no espaço com meteoritos recuperados na Terra, fazendo corresponder os tipos de rocha e as trajetórias orbitais entre os dois.

Liderados por investigadores do Centro Nacional Francês de Investigação Científica, do Observatório Europeu do Sul e da Universidade Charles, na República Checa, os estudos centraram-se nos condritos H (alto teor de ferro) e L (baixo teor de ferro), o tipo mais comum, que representa cerca de 70% dos meteoritos.

São assim designados porque são constituídos por pequenas partículas chamadas côndrulos, causadas pelo arrefecimento rápido da rocha fundida.

Os investigadores determinaram que estes meteoritos condritos H e L chegaram ao nosso planeta vindos de três famílias de asteroides chamadas Massalia, Karin e Koronis, todas localizadas na cintura principal de asteroides entre Marte e Júpiter.

Uma equipa de estudo conseguiu também atribuir datas a colisões notáveis nestas famílias de asteroides, causando novas cascatas de rocha que acabariam por chegar à Terra.

Massalia sofreu colisões importantes há 466 milhões de anos e há 40 milhões de anos, enquanto as famílias Karin e Koronis sofreram colisões há cerca de 5,8 e 7,6 milhões de anos, respetivamente.

“As provas de apoio incluem a existência de bandas de poeira associadas, as idades de exposição aos raios cósmicos dos meteoritos de condrito H e a distribuição das órbitas pré-atmosféricas dos meteoritos”, escrevem os autores.

Isto significa que a maioria dos meteoritos que atingem a Terra atualmente provêm de menos grupos de asteroides do que seria de esperar - e também de eventos de colisão mais recentes. Esses eventos de colisão (relativamente) recentes explicam a aterragem dos meteoritos na era atual.


Segundo a equipa, isto é parcialmente explicado pelo ciclo de vida das famílias de asteroides. Os eventos de colisão vividos por estas famílias de asteroides conduzem a um grande número de fragmentos de asteroides mais pequenos, o que aumenta as suas hipóteses de novas colisões e de se libertarem da cintura de asteroides.

Os investigadores também analisaram outros meteoritos menos comuns para além dos condritos H e L, aumentando o número de meteoritos contabilizados para mais de 90%. Estes foram atribuídos a famílias de asteroides, incluindo Veritas, Polana e Eos.

 

in ZAP

domingo, maio 05, 2024

A complicação que foram os primeiros tempos do sistema solar...

A Terra tem uma Lua graças a… Júpiter

 

 

Durante a “grande instabilidade planetária”, o maior planeta do nosso Sistema Solar pode ter tido uma mão na monumental colisão que se acredita ter criado a nossa Lua, verificou um estudo recente.

A monumental colisão que se acredita ter criado a Lua - um acontecimento cósmico que terá ocorrido entre 60 e 100 milhões de anos após o início do Sistema Solar - pode estar de mãos dadas com a “grande instabilidade planetária”, um grande evento que deixou Júpiter, bem como outros gigantes gasosos, a vaguear caoticamente pelo Sistema Solar.

Júpiter, o maior planeta do nosso Sistema Solar, poderá ter desempenhado um papel fundamental na formação da nossa lua, conclui um estudo publicado a 16 de abril na revista Science.

Historicamente, a grande instabilidade viu os gigantes gasosos, especialmente Júpiter, migrarem das suas posições originais, o que levou a perturbações orbitais significativas em todo o Sistema Solar. Esta migração está intimamente ligada a uma série de eventos cósmicos, incluindo aquele que provavelmente causou a formação da lua da Terra.

A nova hipótese sugere que os movimentos de Júpiter desestabilizaram a órbita de Theia, um protoplaneta do tamanho de Marte. Os investigadores acreditam que esta desestabilização precipitou a colisão de Theia com a Terra, lançando os detritos que eventualmente se aglutinaram para formar o nosso satélite natural.

A teoria é apoiada por estudos que ilustram as composições e origens de asteroides e cometas, que sugerem que o sistema solar primitivo foi um cenário de considerável tumulto, influenciado em grande parte pelas trajetórias migratórias dos planetas gigantes.

O enigma de como estes corpos celestes acabaram nas suas órbitas atuais centra-se na hipótese de a sua formação inicial ter ocorrido mais perto do Sol do que onde agora se encontram.

O “Modelo de Nice”, cujo nome deriva da cidade francesa onde foi desenvolvido, constitui a base da compreensão atual desta instabilidade orbital.

Este modelo associava originalmente a instabilidade a um período posterior da história do sistema solar, coincidindo com o Bombardeamento Pesado Tardio. No entanto, mudanças recentes no consenso científico colocam agora esta instabilidade muito mais cedo, possivelmente nos primeiros 100 milhões de anos de vida do sistema solar.

Este momento é crucial, uma vez que se alinha com o período de formação dos asteroides troianos de Júpiter, indicadores-chave dos padrões migratórios iniciais do planeta gigante.

O estudo centrou-se em meteoritos específicos conhecidos como condritos EL enstatite, cruciais para datar os acontecimentos da grande instabilidade porque a sua composição é muito semelhante à da Terra, sugerindo que tiveram origem na mesma região do sistema solar.

Surpreendentemente, estes meteoritos estão ligados à família de asteroides Athor, que se situam longe na cintura de asteroides, o que indica que foram deslocados pela mesma instabilidade que moveu Júpiter.

Utilizando simulações dinâmicas, os investigadores conseguiram mapear a forma como a migração de Júpiter pode ter atirado o progenitor da família Athor para a cintura de asteroides, 60 milhões de anos após a formação do sistema solar, momento consistente com a colisão entre a Terra e Theia, sugerindo uma ligação entre a viagem caótica de Júpiter e o nascimento da nossa lua.

Este momento é crucial, uma vez que se alinha com o período de formação dos asteroides troianos de Júpiter, indicadores-chave dos padrões migratórios iniciais do planeta gigante.

O estudo centrou-se em meteoritos específicos conhecidos como condritos EL enstatite, cruciais para datar os acontecimentos da grande instabilidade porque a sua composição é muito semelhante à da Terra, sugerindo que tiveram origem na mesma região do sistema solar.

Surpreendentemente, estes meteoritos estão ligados à família de asteroides Athor, que se situam longe na cintura de asteroides, o que indica que foram deslocados pela mesma instabilidade que moveu Júpiter.

Utilizando simulações dinâmicas, os investigadores conseguiram mapear a forma como a migração de Júpiter pode ter atirado o progenitor da família Athor para a cintura de asteroides, 60 milhões de anos após a formação do sistema solar, momento consistente com a colisão entre a Terra e Theia, sugerindo uma ligação entre a viagem caótica de Júpiter e o nascimento da nossa lua.

 

in ZAP

quarta-feira, março 08, 2023

O maior meteorito alguma vez recuperado caiu há 47 anos na China

(imagem daqui)
   
No dia 8 de março de 1976, há 34 anos, ocorreu a queda do maior meteorito rochoso já registada. O Meteorito Jilin caiu perto da cidade de Jilin, na Manchúria, nordeste da China (44° 0′ N, 126° 0′ E).

Foram recuperadas quase 4 toneladas de escombros do meteorito classificado com um condrito tipo H5 e o maior dos pedaços tinha um peso de 1,77 toneladas. Trata-se também do fragmento mais massivo já recuperado de um meteorito.

O impacto produziu uma cratera de 6 metros de profundidade, a cerca de 200 metros da residência mais próxima em Jilin.
  
(imagem daqui)

terça-feira, março 08, 2022

O maior meteorito alguma vez recuperado caiu há 46 anos na China

(imagem daqui)
   
No dia 8 de março de 1976, há 34 anos, ocorreu a queda do maior meteorito rochoso já registada. O Meteorito Jilin caiu perto da cidade de Jilin, na Manchúria, nordeste da China (44° 0′ N, 126° 0′ E).

Foram recuperadas quase 4 toneladas de escombros do meteorito classificado com um condrito tipo H5 e o maior dos pedaços tinha um peso de 1,77 toneladas. Trata-se também do fragmento mais massivo já recuperado de um meteorito.

O impacto produziu uma cratera de 6 metros de profundidade, a cerca de 200 metros da residência mais próxima em Jilin.
  
(imagem daqui)

segunda-feira, março 08, 2021

O maior meteorito alguma vez recuperado caiu há 45 anos na China

(imagem daqui)
   
No dia 8 de março de 1976, há 34 anos, ocorreu a queda do maior meteorito rochoso já registada. O Meteorito Jilin caiu perto da cidade de Jilin, na Manchúria, nordeste da China (44° 0′ N, 126° 0′ E).

Foram recuperadas quase 4 toneladas de escombros do meteorito classificado com um condrito tipo H5 e o maior dos pedaços tinha um peso de 1,77 toneladas. Trata-se também do fragmento mais massivo já recuperado de um meteorito.

O impacto produziu uma cratera de 6 metros de profundidade, a cerca de 200 metros da residência mais próxima em Jilin.
  
(imagem daqui)

sábado, fevereiro 08, 2014

O meteorito mais bem estudado da história caiu há 45 anos em Allende, México

Allende fragment

The Allende meteorite is the largest carbonaceous chondrite ever found on Earth. The fireball was witnessed at 01:05 on February 8, 1969, falling over the Mexican state of Chihuahua. After breaking up in the atmosphere, an extensive search for pieces was conducted and it is often described as "the best-studied meteorite in history". The Allende meteorite is notable for possessing abundant, large calcium-aluminium-rich inclusions, which are among the oldest objects formed in the Solar System.
Carbonaceous chondrites comprise about 4 percent of all meteorites observed to fall from space. Prior to 1969, the carbonaceous chondrite class was known from a small number of uncommon meteorites such as Orgueil, which fell in France in 1864. Meteorites similar to Allende were known, but many were small and poorly studied.
  
Fall
The original stone is believed to have been approximately the size of an automobile traveling towards the Earth at more than 10 miles per second. The fall occurred in the early morning hours of February 8, 1969. At 01:05 a huge, brilliant fireball approached from the southwest and lit the sky and ground for hundreds of miles. It exploded and broke up to produce thousands of fusion crusted individuals. This is typical of falls of large stones through the atmosphere and is due to the sudden braking effect of air resistance. The fall took place in northern Mexico, near the village of Pueblito de Allende in the state of Chihuahua. Allende stones became one of the most widely distributed meteorites and provided a large amount of material to study, far more than all of the previously known carbonaceous chondrite falls combined.

Path of the fireball and the area in northern Mexico where the meteorite pieces landed (the strewnfield)

Strewnfield
Stones were scattered over a huge area – one of the largest meteorite strewnfields known. This strewnfield measures approximately 8 by 50 kilometers. The region is desert, mostly flat, with sparse to moderate low vegetation. Hundreds of meteorites were collected shortly after the fall. Approximately 2 or 3 tonnes of specimens were collected over a period of more than 25 years. Some sources guess that an even larger amount was recovered (estimates as high as 5 tonnes can be found), but there is no way to make an accurate estimate. Even today, over 40 years later, specimens are still occasionally found. Fusion crusted individual Allende specimens ranged from 1 gram to 110 kilograms.
   
Study
Allende is often called "the best-studied meteorite in history." There are several reasons for this: Allende fell in early 1969, just months before the Apollo program was to return the first moon rocks. This was a time of great excitement and energy among planetary scientists. The field was attracting many new workers and laboratories were being improved. As a result, the scientific community was immediately ready to study the new meteorite. A number of museums launched expeditions to Mexico to collect samples, including the Smithsonian Institution and together they collected hundreds of kilograms of material with CAls. The CAls are billions of years old, and help to determine the age of the solar system. The CAls had very unusual isotopic compositions, with many being distinct from the Earth, Moon and other meteorites for a wide variety of isotopes. These "isotope anomalies" contain evidence for processes that occurred in other stars before the solar system formed.
Allende contains chondrules and CAls that are estimated to be 4.567 billion years old, the oldest known matter (other carbonaceous chondrites also contain these). This material is 30 million years older than the Earth and 287 million years older than the oldest rock known on Earth, Thus, the Allende meteorite has revealed information about conditions prevailing during the early formation of our solar system. Carbonaceous chondrites, including Allende, are the most primitive meteorites, and contain the most primitive known matter. They have undergone the least mixing and remelting since the early stages of solar system formation. Because of this, their age is frequently taken as the "age of the solar system."
   
Allende meteorite - image by Matteo Chinellato; cube = 1 cm
   
Structure
The meteorite was formed from nebular dust and gas during the early formation of the solar system. It is a "stone" meteorite, as opposed to an "iron," or "stony iron," the other two general classes of meteorite. Most Allende stones are covered, in part or in whole, by a black, shiny crust created as the stone descended at great speed through the atmosphere as it was falling towards the earth from space. This causes the exterior of the stone to become very hot, melting it, and forming a glassy "fusion crust."
When an Allende stone is sawed into two pieces and the surface is polished, the structure in the interior can be examined. This reveals a dark matrix embedded throughout with mm-sized, lighter-colored chondrules, tiny stony spherules found only in meteorites and not in earth rock (thus it is a chondritic meteorite). Also seen are white inclusions, up to several cm in size, ranging in shape from spherical to highly irregular or "amoeboidal." These are known as calcium-aluminum-rich inclusions or "CAls", so named because they are dominantly composed of calcium- and aluminum-rich silicate and oxide minerals. Like many chondrites, Allende is a breccia, and contains many dark-colored clasts or "dark inclusions" which have a chondritic structure that is distinct from the rest of the meteorite. Unlike many other chondrites, Allende is almost completely lacking in Fe-Ni metal.

Chondrules of Allende
   
Composition
The matrix and the chondrules consist of many different minerals, predominantly olivine and pyroxene. Allende is classified as a CV3 carbonaceous chondrite: the chemical composition, which is rich in refractory elements like calcium, aluminum, and titanium, and poor in relatively volatile elements like sodium and potassium, places it in the CV group, and the lack of secondary heating effects is consistent with petrologic type 3 (see meteorites classification). Like most carbonaceous chondrites and all CV chondrites, Allende is enriched in the oxygen isotope O-16 relative to the less abundant isotopes, O-17 and O-18. In June 2012, researchers announced the discovery of another inclusion dubbed panguite, a hitherto unknown type of titanium dioxide mineral.
There was found to be a small amount of carbon (including graphite and diamond), and many organic compounds, including amino acids, some not known on Earth. Iron, mostly combined, makes up about 24% of the meteorite.

Subsequent reserch
Close examination of the chondrules in 1971, by a team from Case Western Reserve University, revealed tiny black markings, up to 10 trillion per square centimeter, which were absent from the matrix and interpreted as evidence of radiation damage. Similar structures have turned up in lunar basalts but not in their terrestrial equivalent which would have been screened from cosmic radiation by the Earth's atmosphere and geomagnetic field. Thus it appears that the irradiation of the chondrules happened after they had solidified but before the cold accretion of matter that took place during the early stages of formation of the solar system, when the parent meteorite came together.
The discovery at California Institute of Technology in 1977 of new forms of the elements calcium, barium and neodymium in the meteorite was believed to show that those elements came from some source outside the early clouds of gas and dust that formed the solar system. This supports the theory that shockwaves from a supernova - the explosion of an aging star - may have triggered the formation of, or contributed to the formation of our solar system. As further evidence, the Caltech group said the meteorite contained Aluminum 26, a rare form of aluminum. This acts as a "clock" on the meteorite, dating the explosion of the supernova to within less than 2 million years before the solar system was formed. Subsequent studies have found isotopic ratios of krypton, xenon, nitrogen and other elements that are also unknown in our solar system. The conclusion, from many studies with similar findings, is that there were a lot of substances in the presolar disc that were introduced as fine "dust" from nearby stars, including novas, supernovas, and red giants. These specks persist to this day in meteorites like Allende, and are known as presolar grains.

sexta-feira, fevereiro 08, 2013

O meteorito Allende caiu no México há 44 anos

Fragmento do meteorito Allende

O meteorito Allende é um meteorito caído no estado mexicano de Chihuahua. A sua queda ocorreu as 01.05 horas do dia 8 de fevereiro de 1969, e a bola de fogo originada por sua entrada na atmosfera terrestre foi testemunhada por milhares de pessoas.
O meteorito Allende é o maior condrito (tipo de meteorito primitivo) já descoberto. Como resultado de uma pesquisa neste meteorito, foi descoberto um novo óxido de titânio. Tal mineral foi batizado de Panguite.

quinta-feira, março 08, 2012

O maior meteorito alguma vez recuperado caiu há 36 anos na China

(imagem daqui)

No dia 8 de março de 1976, há 34 anos, ocorreu a queda do maior meteorito rochoso já registada. O Meteorito Jilin caiu perto da cidade de Jilin, na Manchúria, nordeste da China (44° 0′ N, 126° 0′ E).

Foram recuperadas quase 4 toneladas de escombros do meteorito classificado com um condrito tipo H5 e o maior dos pedaços tinha um peso de 1,77 toneladas. Trata-se também do fragmento mais massivo já recuperado de um meteorito.

O impacto produziu uma cratera de 6 metros de profundidade, a cerca de 200 metros da residência mais próxima em Jilin.

(imagem daqui)

sexta-feira, agosto 26, 2011

Novidades sobre asteróides e meteoritos

Sistema solar
Meteoritos vêm de asteróides rochosos mais próximos

Amostras do asteróide Itokawa trazidas para a Terra revelam a novidade

Há muito que os astrónomos suspeitavam que a origem da maioria dos meteoritos que caem na Terra estava nos asteróides. Mas, observadas cá de baixo, as assinaturas físico-químicas desses corpos rochosos que povoam o sistema solar não condiziam com as dos meteoritos. A única maneira era ir lá buscar uma amostra para tirar teimas e foi o que a missão japonesa Hayabusa fez, no asteróide Itokawa, regressando à Terra, no ano passado, com uma mão-cheia de pedacinhos intactos. E o enigma está resolvido: os condritos, a maioria dos meteoritos que caem na superfície terrestre, vêm mesmo dos asteróides, sobretudo dos mais próximos da Terra, designados de tipo S. Os primeiros estudos das amostras do Itokawa são publicados hoje na Science.

in DN - ler notícia